Improvement in Rheological Features, Fluid Loss and Swelling Inhibition of Water-Based Drilling Mud by Using Surfactant-Modified Graphene

Author(s):  
Azeem Rana ◽  
Tawfik A. Saleh ◽  
Mohammad K. Arfaj
2020 ◽  
Vol 5 (10) ◽  
pp. 1269-1273
Author(s):  
Godwin Chukwuma Jacob Nmegbu ◽  
Bright Bariakpoa Kinate ◽  
Bari-Agara Bekee

The extent of damage to formation caused by water based drilling mud containing corn cob treated with sodium hydroxide to partially replace polyanionic cellulose (PAC) as a fluid loss control additive has been studied. Core samples were obtained from a well in Niger Delta for this study with a permeameter used to force the drilling mud into core samples at high pressures. Physio-chemical properties (moisture content, cellulose and lignin) of the samples were measured and the result after treatment showed reduction. The corn cob was combined with the PAC in the ratio of 25-75%, 50-50% and 75-25% in the mud. Analyzed drilling mud rheological properties such as plastic viscosity, apparent viscosity, yield point and gel strength all decreased as percentage of corn cob increased in the combination and steadily decreased as temperature increased to 200oF. Measured fluid loss and pH of the mud showed an increase in fluid loss and pH in mud sample with 100% corn cob. The extent of formation damage was determined by the differences in the initial and final permeability of the core samples. Experimental data were used to develop analytical models that can serve as effective tool to predict fluid loss, rheological properties of the drilling mud at temperature up to 200oF and percentage formation damage at 100 psi.


2014 ◽  
Author(s):  
Anietie N. Okon ◽  
Francis D. Udoh ◽  
Perpetua G. Bassey

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Emine Avci ◽  
Bayram Ali Mert

In this study, the rheological properties and performances of mud prepared with geothermal spring water to be used by geothermal drilling operators were examined at ambient and elevated temperatures. In this context, mud samples were prepared in the compositions detailed in the API specification by using five different geothermal spring water types and a distilled water type. Afterwards, density, apparent viscosity, plastic viscosity, yield point, gel strength, fluid loss, pH, and filter cake thickness of these samples were measured. The drilling muds were analyzed by means of rheological tests in accordance with the standards of the American Petroleum Institute (API). The experimental results have revealed that the mud prepared with geothermal water have lower viscosity and yield point compared to those prepared with freshwater at elevated temperatures. The stability of the muds decreases, especially at temperatures higher than 250°F, and they start to become flocculated. It was concluded that geothermal water-based muds have higher API fluid loss and cake thickness than the freshwater-based one. Therefore, it could be interpreted that the muds prepared with geothermal spring water will exhibit lower flow performance and lower ability of hole cleaning and rate of penetration compared to the freshwater muds. Hence, it is recommended that this kind of water should not be used to prepare drilling mud.


2018 ◽  
Vol 8 (8) ◽  
pp. 1386 ◽  
Author(s):  
Hazlina Husin ◽  
Khaled Abdalla Elraies ◽  
Hyoung Jin Choi ◽  
Zachary Aman

Water-based mud is known as an environmental-friendly drilling fluid system. The formulation of water-based mud is designed to have specific rheological properties under specific oil field conditions. In this study, graphene nanoplatelet and silver nanoparticle (nanosilver) were added to a water-based mud formulation in which they act as drilling mud additives. Rheological properties measurements and filtration tests were conducted for evaluating the influence of the added nanoparticles. The results showed that the graphene nanoplatelet and the nanosilver increased the plastic viscosity (PV) by up to 89.2% and 64.2%, respectively. Meanwhile, both the yield point (YP) and the fluid loss values were reduced. In addition, we believe this is the first result ever report where nanosilver is utilized for enhancing-enhanced water-based mud’s performance.


2018 ◽  
Vol 775 ◽  
pp. 74-80
Author(s):  
Arina Sauki ◽  
Siti Humaira Naqiah Azmi ◽  
Nurul Aimi Ghazali ◽  
Noor Fitrah Abu Bakar ◽  
Wan Asma Wan Ibrahim

The ability of lignin fromRhizophora Apiculata’sblack liquor to act as a fluid loss additive in water-based drilling at HTHP condition was investigated. The lignin biopolymer was extracted from the black liquor using acid precipitation technique using 20% by volume of sulphuric acid at temperature of 45°C and 60°C for pH 4, 6 and 8 respectively. The produced lignin was tested in water based drilling mud at temperature of 250°F, 300°F,350°F and 400°F . The optimum extraction parameters showed that the highest yield of lignin extraction of approximately 51.2% was obtained at pH 4 and extraction temperature of 45°C. It was also observed that theRhizophora Apiculata’slignin has remarkable rheological and filtration controlling properties at HTHP condition as compared to the commercial lignin additive.


Author(s):  
Tecla C. Biwott ◽  
Onyewuchi Akaranta ◽  
Ambrose K. Kiprop ◽  
Oriji Boniface

This paper aimed at improving the water-based drilling mud using Moringa oleifera (M. Oleifera) plant leaves. The rheological properties (plastic viscosity (PV), yield point (YP), and gel strength) of the mud were measured using standard procedures. The mud weight was not affected by M. oleifera concentration (10.03-10.63 pounds per gallon (ppg)). pH of the formulated mud decreased by 28% with increasing concentration of the M. oleifera leaves. The highest PV (33cP) was recorded by mud with 1% M. oleifera leaves at 50ºC while the least value (22cP) was given by control mud at 70ºC temperature. Highest YP (57 1b/100ft2) was recorded by mud sample with 4% concentration of M. oleifera leaves while 1% gave the lowest YP value of 91b/100ft2 at 30ºC and 49ºC respectively.  Gel strength at 10 seconds showed improvement with 2% concentration of leaves by recording maximum of 5 1 b/100 ft2 at 70ºC while the lowest gel strength was recorded by 1% leaves concentration at 49ºC. A good gel strength (30.21 b/100 ft2) at 10 minutes was recorded by mud sample with 3% leaves of M. oleifera at temperature of 30ºC. The results indicated that the M. oleifera leaves significantly improved the rheological properties of the mud. It was also observed that the mud weight of formulated muds with M. oleifera leaves were not affected which leads to stability of the wellbore if the formulation is used.  These great result calls for the need to use M. oleifera leaves to improve rheological properties of the drilling mud. An investigation of M. oleifera as fluid loss control should be done as well as need to carry out isolation and characterization of the active ingredients from M. oleifera leaves so as to establish the compound (s) associated with its activity in drilling mud.


SPE Journal ◽  
2022 ◽  
pp. 1-17
Author(s):  
Emanuel Ricky ◽  
Musa Mpelwa ◽  
Chao Wang ◽  
Bahati Hamad ◽  
Xingguang Xu

Summary Drilling fluid rheology and fluid loss property are fundamental parameters that dictate the effectiveness and easiness of a drilling operation. Maintaining these parameters under high temperatures is technically challenging and has been an exciting research area for the drilling industry. Nonetheless, the use of drilling mud additives, particularly synthetic polymers, threaten ecological environments. Herein, modified corn starch (MCS) was synthesized, characterized, and investigated as an environmentally friendly rheology enhancer and filtration loss controlling agent for water-based mud (WBM) at high temperatures. The experimental results indicated that MCS exhibits better performance in improving rheological properties and fluid loss controlling ability for WBM than the commonly used mud additives. With the addition of an optimal concentration (0.3 wt%), MCS improved the rheology and fluid loss behavior of WBM formulation at harsh aging temperature (220°C) by practically 4 times and 1.7 times, respectively. The MCS was revealed to perform superbly over polyanionic cellulose (PAC) addition at all investigated temperatures. The better performance of the MCS was ascribed to the improved entanglements in the mud system owing to the additional hydroxyl (OH) groups. Besides, the Herschel-Bulkley model was found to be a constitutive model that described the rheological properties of the investigated muds satisfactorily. Moreover, the MCS was found to exhibit acceptable biodegradability properties.


2020 ◽  
Vol 8 (4) ◽  
pp. 103802 ◽  
Author(s):  
Azeem Rana ◽  
Mohammad K. Arfaj ◽  
Abdullah S. Yami ◽  
Tawfik A. Saleh

Sign in / Sign up

Export Citation Format

Share Document