Investigating Factors that May Impact the Success of Carbon Dioxide Enhanced Oil Recovery in Shale Reservoirs

Author(s):  
Sherif Fakher
Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6619
Author(s):  
Mohamed Mehana ◽  
Qinjun Kang ◽  
Hari Viswanathan

With only less than 10% recovery, the primary production of hydrocarbon from shale reservoirs has redefined the energy equation in the world. Similar to conventional reservoirs, Enhanced Oil Recovery (EOR) techniques could be devised to enhance the current recovery factors. However, shale reservoirs possess unique characteristics that significantly affect the fluid properties. Therefore, we are adopting a molecular simulation approach that is well-suited to account for these effects to evaluate the performance of three different gases, methane, carbon dioxide and nitrogen, to recover the hydrocarbons from rough pore surfaces. Our hydrocarbon systems consists of either a single component (decane) or more than one component (decane and pentane). We simulated cases where concurrent and countercurrent displacement is studied. For concurrent displacement (injected fluids displace hydrocarbons towards the production region), we found that nitrogen and methane yielded similar recovery; however nitrogen exhibited a faster breakthrough. On the other hand, carbon dioxide was more effective in extracting the hydrocarbons when sufficient pressure was maintained. For countercurrent displacement (gases are injected and hydrocarbons are produced from the same direction), methane was found to be more effective, followed by carbon dioxide and nitrogen. In all cases, confinement reduced the recovery factor of all gases. This work provides insights to devise strategies to improve the current recovery factors observed in shale reservoirs.


2021 ◽  
Vol 7 ◽  
pp. 960-967
Author(s):  
Mohammad Hossein Ahmadi ◽  
S.M. Alizadeh ◽  
Dmitry Tananykhin ◽  
Saba Karbalaei Hadi ◽  
Pavel Iliushin ◽  
...  

2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


2008 ◽  
Vol 16 (3) ◽  
pp. 343-353 ◽  
Author(s):  
Edgar G. Hertwich ◽  
Martin Aaberg ◽  
Bhawna Singh ◽  
Anders H. Strømman

Author(s):  
B. A. Suleimanov ◽  
S. J. Rzayeva ◽  
U. T. Akhmedova

Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-displacing agents along with a significant amount of gases, mainly carbon dioxide. Earlier, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than nongasified systems. In a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


2021 ◽  
Author(s):  
Xiaofei Xiong ◽  
James Jia Sheng

Abstract Sustainable development of shale reservoirs and enhanced oil recovery have become a challenge for the oil industry in recent years. Shale reservoirs are typically characterized by nano Darcy-scale matrix, natural fractures, and artificially fractures with high permeability. Some of earlier studies have confirmed that gas huff-n-puff has been investigated and demonstrated as the most effective and promising solution for improving oil recovery in tight shale reservoirs with ultra-low permeability. Fractures provide an advantage in enhancing recovery from shale reservoirs but they also pose serious problems such as severe gas channeling, which led to rapid decline production from a single well. More studies are needed to optimize the process. This paper studies the method of foam-assisted N2 huff-n-puff to enhance oil recovery in fractured shale cores. The influence of foam on oil recovery was analyzed. The effect of matrix permeability, cycle number and production time on oil recovery are also considered. The shale core used in the experiment was from Sichuan Basin, China. For the purpose of comparation and validation, two groups of tests were conducted. One group of tests was N2 huff-n-puff, and the other was foam-N2 huff-n-puff. In the optimization experiment, matrix permeabilities were set as 0.01mD, 0.008mD and 0.001mD, cycle numbers ranged from one to five, the production time is designed to be 1 hour and 24 hours respectively. During the puff period of experiments, the history of oil recovery was closely monitored to reveal the mechanism. During a round of gas injection of fractured shale cores, foam-assisted N2 huff-n-puff oil recovery is 4.59%, which is significantly higher than that of N2 huff-n-puff is only 0.0126%, and the contrast becomes more obvious with the increase of matrix permeability. The results also showed that the cumulative oil recovery increased as the number of cycles was increased, with the same experimental conditions. There is an optimal production time to achieve maximum oil recovery. The cycle numbers, matrix permeability, and production time played important roles in foam-assisted N2 huff-n-puff injection process. Therefore, under certain conditions, foam-N2 huff-n-puff has a positive effect on oil development in fractured shale.


Sign in / Sign up

Export Citation Format

Share Document