Integrated Approach for Successful Well Abandonment Under Challenging Well Conditions – A Case Study

2021 ◽  
Author(s):  
Islam Isgenderov ◽  
Victor Osayande ◽  
Svetlana Nafikova ◽  
Fajar Budi Prasetyo ◽  
Wouter Alexander van El

Abstract Emerging technologies, stringent permanent well abandonment regulations, and increasing well complexity affect the way we execute well intervention operations. One of the major operators in the Netherlands had an objective to set underbalanced cement plugs in brine across a deviated section using managed-pressure equipment to overcome high reservoir bottomhole pressure. The project involved several challenges: large-diameter production casing with a requirement to maintain high shut-in wellhead pressure, complex wellbore geometry, operations from a workover rig with zero discharge allowance, corrosive salt environment, and small cement slurry volume. These challenges had to be addressed to complete well abandonment to minimize safety risks, maximize efficiency, and achieve compliance with industry standards and regulatory requirements. This paper discusses two case studies involving underbalanced pump-and-pull and conventional balanced plug placement techniques. Thorough analysis and risk assessment, engineering design approach, comprehensive laboratory testing, and fit-for-purpose surface equipment and downhole tools enabled flawless job execution and placement and achievement of long-term zonal isolation. The first well-barrier elements were successfully verified by tagging and pressure testing in both cases. Results of this study include the following observations and conclusions: Managed-pressure cementing was proven to be an ideal solution for a well abandonment in a reservoir environment of high bottomhole pressure.Highly magnesium-resistant cement slurry design should be considered when setting cement plugs across an extremely corrosive salt environment.Successful verification of the first well-barrier element simplifies operations for subsequent cement plugs. Cost-effective solutions for permanent well abandonment under challenging downhole conditions attracts increasing interest from petroleum engineers due to increasing well complexity and low oil prices that challenge the economics of wells, leading to abandonment. The current paper describes the challenging conditions under which the wells had to be abandoned, thorough analysis of the risks involved, and an effective solution. The design strategy, execution, evaluation, and results for these two wells are discussed in detail and will help to guide success and solve problems related to permanent well abandonment under similar challenging conditions.

2021 ◽  
Author(s):  
Yun Thiam Yap ◽  
Avinash Kishore Kumar

Abstract Typically, most of the well abandonment practice is reference to the recognized industry standards i.e. NORSOK, UK Oil & Gas and etc, and this is how the wells abandonment was carried out in the past. These practices however evolved/changed over time with lessons learnt and experiences and turn into a fit for purpose solutions for the Client. The shift in international and local standards and regulations for a robust plug and abandonment approach has placed the need for a better and long lasting permanent P&A methodology. Adhering to the existing industry standards in well abandonment is somehow not practical and not cost effective to be implemented in different part of the well, where there are major differences in local regulations, reservoir conditions, caprock thickness, well design philosophy and etc. The magnitude of abandonment cost increase is not at par with the risk reduction in long term hydrocarbon leakage. A fit for purpose solutions is recommended in closing the gap between cost and risk. Due to the extremely varied well architecture between wells, the approach to permanent abandonment varies depending on casing sizes, presence of packers and no of casings present to the caprock area. On top of that, identifying the highest depth for a placement of cement plug will reduce on the amount of plugs to be placed, saving rig time and operational time. So far, 16 idle wells have since been permanently abandoned with the systematic approach of applying caprock restoration concept and reinstating the poor isolation across caprock areas with cement with the assistance of technology to the likes of perf-wash-cement, and hydro mechanical casing cutter. These wells have successfully been abandoned as per host authority standards. This paper will explore a major local oil company’ approach to decommissioning of wells, in line with local regulations enforced, while ensuring a cost effective approach is applied in line with the available technologies.


2010 ◽  
Vol 28 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Laura Louie ◽  
Nopporn Pathanapornpandh ◽  
Unchalee Pultajuk ◽  
Robert Kaplan ◽  
Ian Hodgson ◽  
...  

Acupuncture in combination with antiretroviral therapies is a potentially useful treatment for HIV-related symptom relief in resource-poor settings. Traditional Chinese medicine has a long history of being used to enhance immune function. In the setting of HIV, Chinese traditional medicine allows for symptom treatment without adding extra medications to a complex drug regime. This paper provides details of a project at Mae On Hospital in rural northern Thailand where allopathic/conventional treatments are used in tandem with acupuncture. A preliminary evaluation of the project suggests that an integrated approach to symptom relief is viewed positively by respondents receiving acupuncture, though further studies are required to confirm the association between acupuncture and symptom relief. The project also demonstrates the feasibility of developing a cost-effective acupuncture programme using local healthcare staff.


1990 ◽  
Vol 6 (1) ◽  
pp. 25-44 ◽  
Author(s):  
Deborah A. Finkelstein ◽  
Susan Frissell

2019 ◽  
Vol 26 (4) ◽  
pp. 90-100
Author(s):  
Jacek Łubiński ◽  
Henryk Olszewski

Abstract In the design process of offshore steel structures, it is typical to employ commercial calculation codes in which simulation and evaluation of results are performed on the basis of the available standards (e.g. API, DNV, Lloyds). The modeling and solution rely on finite element methods and cover the simulation of the structure’s properties along with the influence of the marine environment – sea currents, wave and wind loading, as well as the influence of vibrations, buoyancy and accompanying mass of water. Both commercial and open source mathematical modeling software which is available nowadays allows for cost effective and flexible implementation of advanced models for offshore industrial structures with high level of credibility and safety. The models can be built to suit task-specific requirements and evaluated on the basis of the selected criterial system best suited to the needs of the customer. Examples of methodology for environmental and structural model development are presented, along with simulation results covering a wide scope of data, ranging from stress and deformation to resonant characteristics and issues of technological feasibility.


Surfaces ◽  
2019 ◽  
Vol 2 (3) ◽  
pp. 485-496 ◽  
Author(s):  
Wilson Handoko ◽  
Farshid Pahlevani ◽  
Yin Yao ◽  
Karen Privat ◽  
Veena Sahajwalla

Corrosion resistance of steel has attracted substantial interest for manufacturing applications to reduce costs corresponding to part failures, unexpected maintenance, and shortening lifespan. Meanwhile, millions of tonnes of slag, non-recyclable glass, and automotive shredder residue (ASR) are discarded into landfills every year, polluting the environment. Combining these two major issues, we delivered an alternative solution to enhance corrosion resistance of high-C steel. In this research, utilisation of these wastes (which were chemically bonded into steel substrate) as sources for production of multi-hybrid layering—including the multi-phase ceramic layer, the carbide layer, and the selective diffusion layer—was successfully achieved by single step surface modification technology. High-resolution topographical imaging by SEM and chemical composition analysis in micron-volume by electron probe micro analyser (EPMA) were performed. Nano-characterisation by atomic force microscopy (AFM) using the PeakForce quantitative nanomechanical mapping (PF-QNM) method was conducted to define Young’s modulus value of each phase in detail. Results revealed improvement of corrosion resistance by 39% and a significantly increased hardness of 13.58 GPa. This integrated approach is prominent for economic and environmental sustainability, consolidating industry demands for more profits, producing durable, steel components in a cost effective way to reduce dependency on new resources, and minimising negative impacts to the environment from disposal of wastes to the landfills.


Author(s):  
Linda Landells ◽  
Martyn Burke ◽  
Meindert Boysen

INTRODUCTION:The changing regulatory landscape brings new challenges to Health Technology Assessment (HTA). Marketing authorizations are being granted as the evidence base evolves to facilitate timely patient access to promising health technologies. Consequently, some products come to HTA bodies sooner in their development cycles with less evidence, which ultimately leads to greater uncertainty in decision making. A key challenge for payer and HTA bodies is providing access to promising medicines while the evidence is still emerging, in a financially sustainable way.METHODS:Changes to the Cancer Drugs Fund (CDF) have resulted in a managed access fund for cancer medicines in England. The National Institute for Health and Care Excellence (NICE) can now recommend a treatment for use within the CDF if there is plausible potential to satisfy the criteria for routine use in the National Health Service (NHS) at its current price, but the evidence is not robust enough and associated with significant uncertainty. Further evidence is then generated in clinical trials, through observational data collection, or a combination of the two, while the drug's price reflects the decision uncertainty. At the end of the managed access period, NICE reviews the guidance to determine if the treatment can be recommended for routine commissioning.RESULTS:The first treatment recommended for use within the new CDF was osimertinib for non-small cell lung cancer (1). At the time of NICE appraisal, there was considerable uncertainty in osimertinib's clinical and cost effectiveness because only short-term phase II trial results were available. NICE's independent appraisal committee considered there was plausible potential for osimertinib to be cost effective and identified that an ongoing phase III trial would provide longer-term data addressing the key uncertainties.CONCLUSIONS:An integrated approach between payer and HTA decision-maker has significantly changed how cancer treatments in England are appraised. This collaborative way of working heralds a more sustainable approach to introducing promising cancer treatments.


2002 ◽  
Vol 2 ◽  
pp. 1254-1266
Author(s):  
Ekko van Ierland ◽  
Corjan Brink ◽  
Leen Hordijk ◽  
Carolien Kroeze

Environmental economics deals with the optimal allocation of production factors and correcting market failure in protecting the environment. Market failure occurs because of externalities, common property resources, and public goods. Environmental policy instruments include direct regulation, taxes/subsidies, tradable permits, deposit systems, voluntary agreements, and persuasion.Environmental policies usually focus on one pollutant or environmental issue but may have substantial impacts on other emissions and environmental problems. Neglecting these impacts will result in suboptimal policies. We present an integrated optimisation model for determining cost-effective strategies to simultaneously reduce emissions of several pollutants from several sources, allowing for interrelations between sources and abatement options. Our integrated approach in regard to acidifying compounds and greenhouse gases will be able to provide cost-effective policy options that will result in lower overall abatement costs.This paper shows that efficient emission reduction can be calculated, but we argue that, for transboundary air pollution and climate change, it is difficult to implement the socially optimal solution because strong incentives exist for “free-riding”. In order to implement efficient policies, international environmental agree-ments like the Gothenburg or the Kyoto Protocol are necessary to establish stable coalitions. The stability of these agreements depends on the distribution of costs and benefits over countries and on the redistribution of the gains of cooperation.


Author(s):  
Agnes Marie Horn ◽  
Mons Hauge ◽  
Per-Arne Ro̸stadsand ◽  
Bjarne Bjo̸rnbakk ◽  
Peer Dahlberg ◽  
...  

A large diameter high strength titanium free-hanging catenary riser was evaluated by the Demo 2000 Ti-Rise project, from initiative of the Kristin Field development license. In order to reduce the uncertainties related to the schedule, cost, and special technical issues identified in the work related to a similar riser for future installation on the A˚sgard B semi-submersible platform, a fabrication qualification of a full scale riser in titanium was run. Several full-scale production girth welds were made in an in-situ fabrication environment. The welding was performed on extruded titanium grade 23 (ASTM) pipes with an ID of 25.5″) and wall thickness of 30 mm. The main challenge was to develop a highly productive TIG orbital welding procedure, which produced welds with as low pore content as possible. It is well known that sub-surface pores often are initiation sits for fatigue cracks in high strength titanium welds. This paper describes how a greatly improved productivity was obtained in combination with a high weld quality. NDT procedures were developed whit the main on the reliability to detect and locate possible sub-surface weld defects, volumetric defects such as pores and tungsten particles and planar defects such as lack of fusion. The results from the actual Non Destructive Testing (NDT), the mechanical testing, and the fatigue testing of the subjected welds are presented. The response of the catenary is optimised by varied distribution of weight coating along the riser’s length. A satisfactory weight coating with sufficient strength, bond strength, and wear properties was developed and qualified. The riser is planned to be fabricated from extruded titanium pipes, welded together onshore to one continuous piece. The field coating is added and the riser is loaded into the sea and towed offshore and installed.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1159 ◽  
Author(s):  
Maria Papa ◽  
Luca Sarno ◽  
Francesco Vitiello ◽  
Vicente Medina

Few studies about modelling pumice debris flows are available in literature. An integrated approach based on field surveys and numerical modelling is here proposed. A pumiceous debris flow, which occurred in the Amalfi Coast (Italy), is reconstructed by the numerical code, FLATModel, consisting of a two-dimensional shallow-water model written in curvilinear coordinates. The morphological evolution of the gully and of the alluvial fan was monitored by terrestrial laser scanner and photo-modelling aerial surveys, providing, in a cost-effective way, data otherwise unavailable, for the implementation, calibration and validation of the model. The most suitable resistance law is identified to be the Voellmy model, which is found capable of correctly describing the friction-collisional resistance mechanisms of pumiceous debris flows. The initial conditions of the numerical simulations are assumed to be of dam-break type: i.e., they are given by the sudden release of masses of pumice, whose shape and depths are obtained by reconstruction of the pre-event slopes. The predicted depths and shape of deposits are compared with the measured ones, where a good agreement (average error smaller than 10 cm) is observed for several dam-break scenarios. The proposed cost-effective integrated approach can be straightforwardly employed for the description of other debris flows of the same kind and for better designing risk mitigation measures.


Sign in / Sign up

Export Citation Format

Share Document