An Eagle Ford Case Study: Monitoring Fracturing Propagation Through Sealed Wellbore Pressure Monitoring

2021 ◽  
Author(s):  
Kourtney Brinkley ◽  
Trevor Ingle ◽  
Jackson Haffener ◽  
Philip Chapman ◽  
Scott Baker ◽  
...  

Abstract This case study details the use of Sealed Wellbore Pressure Monitoring (SWPM) to improve the characterization of fracture geometry and propagation during stimulation of inter-connected stacked pay in the South Texas Eagle Ford Shale. The SWPM workflow utilizes surface pressure gauges to detect hydraulically induced fracture arrivals athorizontal monitor locations adjacent to the stimulated wellbore (Haustveit et al. 2020). A stacked and staggered development in Dewitt County provided the opportunity to jointly evaluateprimary completion and recompletion efforts spanning three reservoir target intervals. Fivemonitor wells at varying distances across the unit were employed for SWPM during the stimulation of four wells. An operational overview, analysis of techniques, correlation with seismic attributes, image log interpretations, and fracture model calibration are provided. Outputs from this workflow allow for a refined analysis ofthe overall completion strategy. The high-density, five well monitor array recorded a total of 160 fracture arrivals at varying vertical and lateral distances, with far-field fracture arrivalsprovidingsignificant insight into propagation rates and geometry. Apronounced trend occurred in both arrival frequency and volumes pumped as monitor locations increased in distance from the treatment well. Specific to target zone isolation, it was identified that traversing vertically in section through a high stress interval yielded a 30% reduction inarrival frequency. An indirect relationship between horizontal distance and arrival frequency was also observed when monitoring from the same interval. A decrease in fracture arrivals from 70% down to 8% was realized as offset distance increased from 120 to 1,700 ft. The results from this study have proven to be instrumental in guiding interdisciplinary discussion. Assessing fracture geometry and propagation during stimulation, particularly in the co-development of a stacked pay reservoir, is paramount to the determination of proper completion volume, perforation design, and well spacing. Leveraging the observations of SWPM ultimately provides greater confidence in field development strategy and economic optimization.

2020 ◽  
Author(s):  
Kyle Haustveit ◽  
Brendan Elliott ◽  
Jackson Haffener ◽  
Chris Ketter ◽  
Josh O'Brien ◽  
...  

2019 ◽  
Author(s):  
Adrian Morales ◽  
Robert Holman ◽  
Drew Nugent ◽  
Jingjing Wang ◽  
Zach Reece ◽  
...  

2020 ◽  
Author(s):  
Avinash Wesley ◽  
Bharat Mantha ◽  
Ajay Rajeev ◽  
Aimee Taylor ◽  
Mohit Dholi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 801
Author(s):  
Gianluca Valenti ◽  
Aldo Bischi ◽  
Stefano Campanari ◽  
Paolo Silva ◽  
Antonino Ravidà ◽  
...  

Stirling units are a viable option for micro-cogeneration applications, but they operate often with multiple daily startups and shutdowns due to the variability of load profiles. This work focused on the experimental and numerical study of a small-size commercial Stirling unit when subjected to cycling operations. First, experimental data about energy flows and emissions were collected during on–off operations. Second, these data were utilized to tune an in-house code for the economic optimization of cogeneration plant scheduling. Lastly, the tuned code was applied to a case study of a residential flat in Northern Italy during a typical winter day to investigate the optimal scheduling of the Stirling unit equipped with a thermal storage tank of diverse sizes. Experimentally, the Stirling unit showed an integrated electric efficiency of 8.9% (8.0%) and thermal efficiency of 91.0% (82.2%), referred to as the fuel lower and, between parenthesis, higher heating value during the on–off cycling test, while emissions showed peaks in NOx and CO up to 100 ppm but shorter than a minute. Numerically, predictions indicated that considering the on–off effects, the optimized operating strategy led to a great reduction of daily startups, with a number lower than 10 per day due to an optimal thermal storage size of 4 kWh. Ultimately, the primary energy saving was 12% and the daily operational cost was 2.9 €/day.


2021 ◽  
Vol 9 (8) ◽  
pp. 839
Author(s):  
Tarek N. Salem ◽  
Nadia M. Elkhawas ◽  
Ahmed M. Elnady

The erosion of limestone and calcarenite ridges that existed parallel to the Mediterranean shoreline forms the calcareous sand (CS) formation at the surface layer of Egypt's northern coast. The CS is often combined with broken shells which are considered geotechnically problematic due to their possible crushability and relatively high compressibility. In this research, CS samples collected from a site along the northern coast of Egypt are studied to better understand its behavior under normal and shear stresses. Reconstituted CS specimens with different ratios of broken shells (BS) are also investigated to study the effect of BS ratios on the soil mixture strength behavior. The strength is evaluated using laboratory direct-shear and one-dimensional compression tests (oedometer test). The CS specimens are not exposed to significant crushability even under relatively high-stress levels. In addition, a 3D finite element analysis (FEA) is presented in this paper to study the degradation offshore pile capacity in CS having different percentages of BS. The stress–strain results using oedometer tests are compared with a numerical model, and it gave identical matching for most cases. The effects of pile diameter and embedment depth parameters are then studied for the case study on the northern coast. Three different mixing ratios of CS and BS have been used, CS + 10% BS, CS + 30% BS, and CS + 50% BS, which resulted in a decrease of the ultimate vertical compression pile load capacity by 8.8%, 15%, and 16%, respectively.


2021 ◽  
pp. 128973
Author(s):  
Liting Zhang ◽  
Yongwen Yang ◽  
Qifen Li ◽  
Weijun Gao ◽  
Fanyue Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document