High Resolution Acoustic Imaging of Plug Related Casing Damage in Hydraulically Fractured Horizontal Wells

2021 ◽  
Author(s):  
Kacper Wardynski ◽  
Anthony Battistel ◽  
Tom Littleford ◽  
Greer Simpson ◽  
Stephen Robinson ◽  
...  

Abstract While assessing post-hydraulic-fracture perforation growth using solid-state, high- resolution acoustic imaging tools, it was noted that plug failures were occurring at a high frequency. Though plug failures can be observed from hydraulic fracture surface pressure and flowrate data, the aggregate frequency, causes, and severity of the resulting erosional damage at plug locations was not previously well understood and highly speculative. The sub-millimetric three-dimensional imagery generated from high resolution solid-state acoustic tools significantly improved the industry's awareness of plug failure frequency, mechanisms of failure, and the resulting impact to stimulation efficiency. These acoustic tools helped to uncover the causes and explore possible solutions to failing plugs. This paper presents aggregate data encompassing casing wall loss at over 2700 plug locations and presents emerging trends that appear across the broader dataset. In addition, this paper showcases the usage of high-resolution acoustic imaging in two operator-specific case studies.

2021 ◽  
Author(s):  
Thomas Littleford ◽  
Anthony Battistel ◽  
Greer Simpson ◽  
Kacper Wardynski

Abstract An advanced high-resolution acoustic imaging technology was deployed for well integrity and deformation assessments in both vertical and horizontal wells. This high frequency acoustic tool collected three-dimensional data quantifying deformation and wall thickness with resolution unobtainable by existing multi-finger caliper, magnetic flux leakage, and rotating single element ultrasonic systems. Several novel imaging methods are enabled by the high number of transducers (up to 512) on the imaging probe. These methods, including beam forming, beam steering and semi-stochastic multipulse imaging, are outlined and discussed in this paper. In addition, multiple types of standardized visualizations enabled by this high-resolution 3D data capture tool are introduced and examples of each are shown. Lab qualification and imagery generated by the high-resolution solid-state imaging technology, when applied to various precision machined geometric anomalies, are presented. In addition to lab validation results, several field studies are showcased including assessments of ovalized casing, complex downhole corrosion, and isolated minor pitting. Leak paths, splits, and damaged regions within threaded casing collars were also identified, imaged, and quantified using the acoustic technology. Until now, these collar regions have been very difficult to image using legacy downhole tools due to fundamental limitations at the threaded connection geometry. Lastly, various downhole completion equipment case studies are presented showcasing several applications of acoustic imaging used to validate the set-position or condition of specialty downhole equipment. This paper outlines the usage of the solid-state acoustic technology to generate three dimensional geometry and wall thickness datasets with sub-millimetric resolution, providing operators with a holistic and actionable assessment of their well integrity.


2015 ◽  
Author(s):  
T.. Bérard ◽  
J.. Desroches ◽  
Y.. Yang ◽  
X.. Weng ◽  
K.. Olson

Abstract Three-dimensional (3D) geomechanical models built at reservoir scale lack resolution at the well sector scale (e.g., hydraulic fracture scale), at least laterally. One-dimensional (1D) geomechanical models, on the other hand, have log resolution along the wellbore but no penetration away from it—along the fracture length for instance. Combining borehole structural geology based on image data and finite elements (FE) geomechanics, we constructed and calibrated a 3D, high-resolution geomechanical model, including subseismic faults and natural fractures, over a 1,500- × 5,200- × 300-ft3 sector around a vertical pilot and a 3,700-ft lateral in the Fayetteville shale play. Compared to a 1D approach, we obtained a properly equilibrated stress field in 3D space, in which the effect of the structure, combined with that of material anisotropy and heterogeneity, are accounted for. These effects were observed to be significant on the stress field, both laterally and local to the faults and natural fractures. The model was used to derive and map in 3D space a series of geomechanically based attributes potentially indicative of hydraulic fracturing performance and risks, including stress barriers, fracture geometry attributes, near-well tortuosity, and the level of stress anisotropy. An interesting match was observed between some of the derived attributes and fracturing data—near-wellbore pressure drop and overall ease and difficulty to place a treatment—encouraging their use for perforation and stage placement or placement of the next nearby lateral. The model was also used to simulate hydraulic fracturing, taking advantage of such a 3D structural and geomechanical representation. It was shown that the structure and heterogeneity captured by the model had a significant impact on hydraulic fracture final geometry.


2008 ◽  
Vol 69 (5) ◽  
pp. 412-421 ◽  
Author(s):  
Martin Gutowski ◽  
Jonathan M. Bull ◽  
Justin K. Dix ◽  
Timothy J. Henstock ◽  
Peter Hogarth ◽  
...  

2011 ◽  
Vol 51 (4) ◽  
pp. 477-485 ◽  
Author(s):  
Daniela Lalli ◽  
Paul Schanda ◽  
Anup Chowdhury ◽  
Joren Retel ◽  
Matthias Hiller ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document