Three-dimensional high-resolution acoustic imaging of the sub-seabed

2008 ◽  
Vol 69 (5) ◽  
pp. 412-421 ◽  
Author(s):  
Martin Gutowski ◽  
Jonathan M. Bull ◽  
Justin K. Dix ◽  
Timothy J. Henstock ◽  
Peter Hogarth ◽  
...  
2021 ◽  
Author(s):  
Thomas Littleford ◽  
Anthony Battistel ◽  
Greer Simpson ◽  
Kacper Wardynski

Abstract An advanced high-resolution acoustic imaging technology was deployed for well integrity and deformation assessments in both vertical and horizontal wells. This high frequency acoustic tool collected three-dimensional data quantifying deformation and wall thickness with resolution unobtainable by existing multi-finger caliper, magnetic flux leakage, and rotating single element ultrasonic systems. Several novel imaging methods are enabled by the high number of transducers (up to 512) on the imaging probe. These methods, including beam forming, beam steering and semi-stochastic multipulse imaging, are outlined and discussed in this paper. In addition, multiple types of standardized visualizations enabled by this high-resolution 3D data capture tool are introduced and examples of each are shown. Lab qualification and imagery generated by the high-resolution solid-state imaging technology, when applied to various precision machined geometric anomalies, are presented. In addition to lab validation results, several field studies are showcased including assessments of ovalized casing, complex downhole corrosion, and isolated minor pitting. Leak paths, splits, and damaged regions within threaded casing collars were also identified, imaged, and quantified using the acoustic technology. Until now, these collar regions have been very difficult to image using legacy downhole tools due to fundamental limitations at the threaded connection geometry. Lastly, various downhole completion equipment case studies are presented showcasing several applications of acoustic imaging used to validate the set-position or condition of specialty downhole equipment. This paper outlines the usage of the solid-state acoustic technology to generate three dimensional geometry and wall thickness datasets with sub-millimetric resolution, providing operators with a holistic and actionable assessment of their well integrity.


2021 ◽  
Author(s):  
Kacper Wardynski ◽  
Anthony Battistel ◽  
Tom Littleford ◽  
Greer Simpson ◽  
Stephen Robinson ◽  
...  

Abstract While assessing post-hydraulic-fracture perforation growth using solid-state, high- resolution acoustic imaging tools, it was noted that plug failures were occurring at a high frequency. Though plug failures can be observed from hydraulic fracture surface pressure and flowrate data, the aggregate frequency, causes, and severity of the resulting erosional damage at plug locations was not previously well understood and highly speculative. The sub-millimetric three-dimensional imagery generated from high resolution solid-state acoustic tools significantly improved the industry's awareness of plug failure frequency, mechanisms of failure, and the resulting impact to stimulation efficiency. These acoustic tools helped to uncover the causes and explore possible solutions to failing plugs. This paper presents aggregate data encompassing casing wall loss at over 2700 plug locations and presents emerging trends that appear across the broader dataset. In addition, this paper showcases the usage of high-resolution acoustic imaging in two operator-specific case studies.


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Author(s):  
Hirano T. ◽  
M. Yamaguchi ◽  
M. Hayashi ◽  
Y. Sekiguchi ◽  
A. Tanaka

A plasma polymerization film replica method is a new high resolution replica technique devised by Tanaka et al. in 1978. It has been developed for investigation of the three dimensional ultrastructure in biological or nonbiological specimens with the transmission electron microscope. This method is based on direct observation of the single-stage replica film, which was obtained by directly coating on the specimen surface. A plasma polymerization film was deposited by gaseous hydrocarbon monomer in a glow discharge.The present study further developed the freeze fracture method by means of a plasma polymerization film produces a three dimensional replica of chemically untreated cells and provides a clear evidence of fine structure of the yeast plasma membrane, especially the dynamic aspect of the structure of invagination (Figure 1).


Sign in / Sign up

Export Citation Format

Share Document