Field Experience of an Innovative Downhole Energy Harvesting System

2021 ◽  
Author(s):  
Muhammad Arsalan ◽  
Jarl André Fellinghaug

Abstract Downhole power harvesting is an enabling technology for a wide range of future production systems and applications, including self-powered downhole monitoring, downhole robotics, and wireless intelligent completions. This paper presents the field experience of an innovative energy harvesting system that was successfully deployed and tested in the harsh downhole conditions of an oil producer. There is a critical need for robust and reliable downhole power generation and storage technologies to push the boundaries of downhole sensing and control. This paper provides an analysis of available ambient energy sources in the downhole environment, and various energy harvesting techniques that can be employed to provide a reliable solution. Advantages and limitations of conventional technique like turbine are compared to advanced energy harvesting technologies. The power requirements and technical challenges related to different downhole applications have also been addressed. The field experience of the novel flow-based energy harvesting system are presented, including the details of both the lab and field prototype design, deployment and testing.

2009 ◽  
Vol 5 (1) ◽  
pp. 61-66 ◽  
Author(s):  
Kaori Yuse ◽  
Michael Lallart ◽  
Lionel Petit ◽  
Claude Richard ◽  
Thomas Monnier ◽  
...  

2019 ◽  
Vol 6 (5) ◽  
pp. 8384-8392 ◽  
Author(s):  
I-Che Ou ◽  
Jia-Ping Yang ◽  
Chia-Hung Liu ◽  
Kai-Jie Huang ◽  
Kun-Ju Tsai ◽  
...  

2019 ◽  
Vol 8 (1) ◽  
pp. 18 ◽  
Author(s):  
Kankan Li ◽  
Xuefeng He ◽  
Xingchang Wang ◽  
Senlin Jiang

The Internet of things requires long-life wireless sensor nodes powered by the harvested energy from environments. This paper proposes a nonlinear electromagnetic energy harvesting system which may be used to construct fully self-powered wireless sensor nodes. Based on a nonlinear electromagnetic energy harvester (EMEH) with high output voltage, the model of a nonlinear interface circuit is derived and a power management circuit (PMC) is designed. The proposed PMC uses a buck–boost direct current-direct current (DC–DC) converter to match the load resistance of the nonlinear interface circuit. It includes two open-loop branches, which is beneficial to the optimization of the impedance matching. The circuit is able to work even if the stored energy is completely drained. The energy harvesting system successfully powered a wireless sensor node. Experimental results show that, under base excitations of 0.3 g and 0.4 g (where 1 g = 9.8 m·s−2) at 8 Hz, the charging efficiencies of the proposed circuit are 172% and 28.5% higher than that of the classic standard energy-harvesting (SEH) circuit. The experimental efficiency of the PMC is 41.7% under an excitation of 0.3 g at 8 Hz.


2019 ◽  
Vol 11 (10) ◽  
pp. 1017-1023 ◽  
Author(s):  
Dalia N. Elsheakh

AbstractA broadband linear polarized antenna is designed for radio frequency energy harvesting. The antenna covers the frequency range from 1 up to 6 GHz with relative impedance bandwidth of 126% at −6 dB reflection coefficient |S11| and extended from 1.1 to 3.3 GHz and from 4.2 to 5.6 GHz at |S11| ≤ −10 dB. A 2 × 2 dual linear polarized (DLP) antenna array is designed based on the antenna element by using equal phase and equal power divider 1-to-4 Wilkinson power divider with 180° phase shifter. The DLP antenna array covers the frequency band from 1.8 to 2.9 GHz. This frequency band covers a wide range of modern wireless communication standards, including GSM 1800, UMTS 2100, Wi-Fi 2.4, and most of LTE bands. The developed array prototype was then used to experimentally validate the simulation results. The horizontally and vertically polarized gain of the designed array were found to be quite similar across the 1.8–2.9 frequency band with an average gain value of 5.5 dBi.


Sign in / Sign up

Export Citation Format

Share Document