Integration of Advanced Borehole Sonic and Resistivity Image Analysis for Fracture and Stress Characterisation - Implications to Carbon Sequestration Feasibility

2021 ◽  
Author(s):  
Debashis Konwar ◽  
Abhinab Das ◽  
Chandreyi Chatterjee ◽  
Fawz Naim ◽  
Chandni Mishra ◽  
...  

Abstract Borehole resistivity images and dipole sonic data analysis helps a great deal to identify fractured zones and obtain reasonable estimates of the in-situ stress conditions of geologic formations. Especially when assessing geologic formations for carbon sequestration feasibility, borehole resistivity image and borehole sonic assisted analysis provides answers on presence of fractured zones and stress-state of these fractures. While in deeper formations open fractures would favour carbon storage, in shallower formations, on the other hand, storage integrity would be potentially compromised if these fractures get reactivated, thereby causing induced seismicity due to fluid injection. This paper discusses a methodology adopted to assess the carbon dioxide sequestration feasibility of a formation in the Newark Basin in the United States, using borehole resistivity image(FMI™ Schlumberger) and borehole sonic data (SonicScaner™ Schlumberger). The borehole image was interpreted for the presence of natural and drilling-induced fractures, and also to find the direction of the horizontal stress azimuth from the identified induced fractures. Cross-dipole sonic anisotropy analysis was done to evaluate the presence of intrinsic or stress-based anisotropy in the formation and also to obtain the horizontal stress azimuth. The open or closed nature of natural fractures was deduced from both FMI fracture filling electrical character and the Stoneley reflection wave attenuation from SonicScanner monopole low frequency waveform. The magnitudes of the maximum and minimum horizontal stresses obtained from a 1-Dimensional Mechanical Earth Model were calibrated with stress magnitudes derived from the ‘Integrated Stress Analysis’ approach which takes into account the shear wave radial variation profiles in zones with visible crossover indications of dipole flexural waves. This was followed by a fracture stability analysis in order to identify critically stressed fractures. The borehole resistivity image analysis revealed the presence of abundant natural fractures and microfaults throughout the interval which was also supported by the considerable sonic slowness anisotropy present in those intervals. Stoneley reflected wave attenuation confirmed the openness of some natural fractures identified in the resistivity image. The strike of the natural fractures and microfaults showed an almost NE-SW trend, albeit with considerable variability. The azimuth of maximum horizontal stress obtained in intervals with crossover of dipole flexural waves was also found to be NE-SW in the middle part of the interval, thus coinciding with the overall trend of natural fractures. This might indicate that the stresses in those intervals are also driven by the natural fracture network. However, towards the bottom of the interval, especially from 1255ft-1380ft, where there were indications of drilling induced fractures but no stress-based sonic anisotropy, it was found that that maximum horizontal stress azimuth rotated almost about 30 degrees in orientation to an ESE-WNW trend. The stress magnitudes obtained from the 1D-Mechanical Earth Model and Integrated Stress Analysis approach point to a normal fault stress regime in that interval. The fracture stability analysis indicated some critically stressed open fractures and microfaults, mostly towards the lower intervals of the well section. These critically stressed open fractures and microfaults present at these comparatively shallower depths of the basin point to risks associated with carbon dioxide(CO2) leakage and also to induced seismicity that might result from the injection of CO2 anywhere in or immediately below this interval.

2013 ◽  
Vol 1 (2) ◽  
pp. SB27-SB36 ◽  
Author(s):  
Kui Zhang ◽  
Yanxia Guo ◽  
Bo Zhang ◽  
Amanda M. Trumbo ◽  
Kurt J. Marfurt

Many tight sandstone, limestone, and shale reservoirs require hydraulic fracturing to provide pathways that allow hydrocarbons to reach the well bore. Most of these tight reservoirs are now produced using multiple stages of fracturing through horizontal wells drilled perpendicular to the present-day azimuth of maximum horizontal stress. In a homogeneous media, the induced fractures are thought to propagate perpendicularly to the well, parallel to the azimuth of maximum horizontal stress, thereby efficiently fracturing the rock and draining the reservoir. We evaluated what may be the first anisotropic analysis of a Barnett shale-gas reservoir after extensive hydraulic fracturing and focus on mapping the orientation and intensity of induced fractures and any preexisting factures, with the objective being the identification of reservoir compartmentalization and bypassed pay. The Barnett Shale we studied has near-zero permeability and few if any open natural fractures. We therefore hypothesized that anisotropy is therefore due to the regional northeast–southwest maximum horizontal stress and subsequent hydraulic fracturing. We found the anisotropy to be highly compartmentalized, with the compartment edges being defined by ridges and domes delineated by the most positive principal curvature [Formula: see text]. Microseismic work by others in the same survey indicates that these ridges contain healed natural fractures that form fracture barriers. Mapping such heterogeneous anisotropy field could be critical in planning the location and direction of any future horizontal wells to restimulate the reservoir as production drops.


Geophysics ◽  
2021 ◽  
pp. 1-97
Author(s):  
kai lin ◽  
Bo Zhang ◽  
Jianjun Zhang ◽  
Huijing Fang ◽  
Kefeng Xi ◽  
...  

The azimuth of fractures and in-situ horizontal stress are important factors in planning horizontal wells and hydraulic fracturing for unconventional resources plays. The azimuth of natural fractures can be directly obtained by analyzing image logs. The azimuth of the maximum horizontal stress σH can be predicted by analyzing the induced fractures on image logs. The clustering of micro-seismic events can also be used to predict the azimuth of in-situ maximum horizontal stress. However, the azimuth of natural fractures and the in-situ maximum horizontal stress obtained from both image logs and micro-seismic events are limited to the wellbore locations. Wide azimuth seismic data provides an alternative way to predict the azimuth of natural fractures and maximum in-situ horizontal stress if the seismic attributes are properly calibrated with interpretations from well logs and microseismic data. To predict the azimuth of natural fractures and in-situ maximum horizontal stress, we focus our analysis on correlating the seismic attributes computed from pre-stack and post-stack seismic data with the interpreted azimuth obtained from image logs and microseismic data. The application indicates that the strike of the most positive principal curvature k1 can be used as an indicator for the azimuth of natural fractures within our study area. The azimuthal anisotropy of the dominant frequency component if offset vector title (OVT) seismic data can be used to predict the azimuth of maximum in-situ horizontal stress within our study area that is located the southern region of the Sichuan Basin, China. The predicted azimuths provide important information for the following well planning and hydraulic fracturing.


Author(s):  
Nagham Jasim Al-Ameri

AbstractOptimum perforation location selection is  an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magnitude of different stress types and geomechanical properties was estimated from well-log data using the Techlog software. The directions of the horizontal stresses are determined in the current wells utilizing image-log formation micro-imager (FMI) and caliper logs. The results in terms of rock mechanical properties showed a reduction in Poisson’s ratio, Young modulus, and bulk modulus near the high-pressure zones as compared to normal pressure zones because of the presence of anhydrite, salt cycles, and shales. Low maximum and minimum horizontal stress values are also observed in high-pressure zones as compared to normal pressure zones indicating the effects of geomechanical properties on horizontal stress estimation. Around the wellbore of the studied wells, formation breakouts are the most expected situation according to the results of the wellbore stress state (effective vertical stress (σzz) > effective tangential stress (σθθ) > effective radial stress (σrr)).


Geophysics ◽  
2003 ◽  
Vol 68 (2) ◽  
pp. 441-452 ◽  
Author(s):  
James T. Rutledge ◽  
W. Scott Phillips

We produced a high‐resolution microseismic image of a hydraulic fracture stimulation in the Carthage Cotton Valley gas field of east Texas. We improved the precision of microseismic event locations four‐fold over initial locations by manually repicking the traveltimes in a spatial sequence, allowing us to visually correlate waveforms of adjacent sources. The new locations show vertical containment within individual, targeted sands, suggesting little or no hydraulic communication between the discrete perforation intervals simultaneously treated within an 80‐m section. Treatment (i.e., fracture‐zone) lengths inferred from event locations are about 200 m greater at the shallow perforation intervals than at the deeper intervals. The highest quality locations indicate fracture‐zone widths as narrow as 6 m. Similarity of adjacent‐source waveforms, along with systematic changes of phase amplitude ratios and polarities, indicate fairly uniform source mechanisms (fracture plane orientation and sense of slip) over the treatment length. Composite focal mechanisms indicate both left‐ and right‐lateral strike‐slip faulting along near‐vertical fractures that strike subparallel to maximum horizontal stress. The focal mechanisms and event locations are consistent with activation of the reservoir's prevalent natural fractures, fractures that are isolated within individual sands and trend subparallel to the expected hydraulic fracture orientation (maximum horizontal stress direction). Shear activation of these fractures indicates a stronger correlation of induced seismicity with low‐impedance flow paths than is normally found or assumed during injection stimulation.


2016 ◽  
Vol 4 (1) ◽  
pp. SB107-SB129 ◽  
Author(s):  
Adam H. E. Bailey ◽  
Rosalind C. King ◽  
Simon P. Holford ◽  
Martin Hand

Natural fractures can be identified in wellbores using electric resistivity image logs; however, the challenge of predicting fracture orientations, densities, and probable contribution to subsurface fluid flow away from the wellbore remains. Regional interpretations of fracture sets are generally confined to areas featuring an extensive reservoir analog outcrop. We have made use of extensive data sets available in Western Australia’s Northern Carnarvon Basin to map subsurface natural fractures, contributing to a regional understanding of fracture sets that can be applied to broader parts of the basin. The Northern Carnarvon Basin is composed of distinct structural domains that have experienced differing tectonic histories. Interpretation of regional fractures was achieved through an integrated approach, incorporating electric resistivity image logs from 52 Carnarvon Basin wells and seismic attribute analysis of two 3D seismic data sets: Bonaventure_3D ([Formula: see text]) and HC_93_3D ([Formula: see text]). Integration of these two data sets allows for a regionally extensive identification of natural fractures away from well control. Fractures of differing age and character are identified within the basin: Outboard areas are dominated by fractures likely to be open to fluid flow that are parallel to subparallel to the approximately east–west present-day maximum horizontal stress, providing possible flow conduits between potential damage zones identified alongside the north–northeast/south–southwest-striking faults that constitute the major structural trend of the basin, and inboard areas dominated by northeast–southwest to north–northeast/south–southeast fractures formed in fault damage-zones alongside normal, and inverted-normal, faults at those orientations. Finally, fractures observed in wells from the Rankin Platform and Dampier Subbasin occur at neither of these orientations; rather, they closely parallel the strikes of local faults. Additionally, variation is seen in fracture strikes due to isotropic present-day stress magnitudes. This methodology extends fracture interpretations from the wellbore and throughout the region of interest, constituting a regional understanding of fracture sets that can be applied to broader parts of the basin.


2004 ◽  
Vol 222 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Stephen E Laubach ◽  
Jon E Olson ◽  
Julia F.W Gale

2021 ◽  
Author(s):  
Abir Banerjee ◽  
Rima Chatterjee ◽  
Dip Kumar Singha

Abstract The efficient production of Coalbed Methane (CBM) gas is facing challenges due to the larger dewatering period from fracture connectivity to the aquifer zone. Also, commingled production from well makes it more difficult to identify the coal seam-wise problem. Therefore, prior knowledge of sub-surface fractures in coal seams is necessary to execute an accurate simulation model for planning hydraulic fracturing treatment. This paper highlights the studies in Bokaro CBM reservoir to mitigate challenges in few wells by characterizing anisotropy, determining fast shear wave polarization angle, maximum horizontal stress direction, fracture orientation, and analysis of low resistivity signature. Both the fast shear wave polarization angle and fracture orientation in resistivity image are observed in the same direction (N26°-35°E) in coal. The fast and slow shear slowness versus frequency plot concludes stress-induced anisotropy resulting from fractures that are supported by resistivity image and drilling core. Processing of the resistivity image log shows the maximum horizontal stress is along NE-SW direction, as identified from drilling-induced fractures. The observation of low resistivity signature with resistivity ranging from 0.4 to 0.8 ohm-m in few wells confirms the presence of conducting minerals such as siderite and pyrite from the x-ray diffraction studies of sidewall core. The present work guides in making production, drilling, and hydraulic fracturing design strategies to better understand the fluid propagation for optimized CBM production and will also help in future geomechanical studies.


2021 ◽  
Vol 73 (09) ◽  
pp. 39-40
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202260, “Inversion of Advanced Full Waveform Sonic Data Provides Magnitudes of Minimum and Maximum Horizontal Stress for Calibrating the Geomechanics Model in a Gas Storage Reservoir,” by Zachariah J. Pallikathekathil, SPE, Xing Wang Yang, and Saeed Hafezy, Schlumberger, et al., prepared for the 2020 SPE Asia Pacific Oil and Gas Conference and Exhibition, originally scheduled to be held in Perth, Australia, 20–22 October. The paper has not been peer reviewed. In 1D geomechanics projects, calibration of stress is extremely important in the construction of a valid mechanical earth model (MEM). The effective minimum horizontal stress (Shmin) data usually are available from traditional measurements, but these have a few deficiencies. The complete paper presents a technique for deriving stresses in which the radial variation of acoustic velocity from an advanced dipole sonic logging tool is inverted to obtain stress. These derived stresses are then used to calibrate the 1D MEM for a gas storage field. Regional Geology The field is in the Otway Basin in Western Victoria. Gas is trapped in the Late Cretaceous Waarre formation at depths between 1155 and 1200 m subsea. The reservoir is sealed by the overlying marine Belfast mudstone, which is the common seal in the stratigraphy across the onshore Otway Basin. The reservoir has excellent reservoir quality and has proved ideal for gas storage. Challenge Posed by the 1D MEM Challenge Posed by the 1D MEM Well 1 was recently drilled in the basin. A 1D MEM - a numerical representation of the geomechanical properties and stress state of the earth at any depth - was planned to be constructed to obtain the current-day far-field principal stresses (Shmin), effective maximum horizontal stress (SHmax), and effective vertical stress (SV)] in the Belfast and Waarre formations. Understanding the stress field was important, especially in the caprock (Belfast) and in the reservoir (Waarre) so that the pressure limits for safe gas-storage operation could be defined better. However, for a variety of reasons, no conventional stress measurements were available to calibrate the modeled stress in the 1D MEM. Without any calibration of the stress, the geomechanics model would feature high uncertainty to be used to define the pressure operational limits for gas-storage operation. Fortunately, a new wireline sonic tool was recorded in the reservoir section and the overburden sections of the borehole in Well 1. A quick dispersion analysis of the waveforms showed that the Paaratte formation, above the Belfast formation, was acoustically stress-sensitive and that advanced processing could be performed to invert the acoustic information to stress values.


Sign in / Sign up

Export Citation Format

Share Document