Inversion of Full Waveform Sonic Data Assists Calibration of Geomechanics Model

2021 ◽  
Vol 73 (09) ◽  
pp. 39-40
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 202260, “Inversion of Advanced Full Waveform Sonic Data Provides Magnitudes of Minimum and Maximum Horizontal Stress for Calibrating the Geomechanics Model in a Gas Storage Reservoir,” by Zachariah J. Pallikathekathil, SPE, Xing Wang Yang, and Saeed Hafezy, Schlumberger, et al., prepared for the 2020 SPE Asia Pacific Oil and Gas Conference and Exhibition, originally scheduled to be held in Perth, Australia, 20–22 October. The paper has not been peer reviewed. In 1D geomechanics projects, calibration of stress is extremely important in the construction of a valid mechanical earth model (MEM). The effective minimum horizontal stress (Shmin) data usually are available from traditional measurements, but these have a few deficiencies. The complete paper presents a technique for deriving stresses in which the radial variation of acoustic velocity from an advanced dipole sonic logging tool is inverted to obtain stress. These derived stresses are then used to calibrate the 1D MEM for a gas storage field. Regional Geology The field is in the Otway Basin in Western Victoria. Gas is trapped in the Late Cretaceous Waarre formation at depths between 1155 and 1200 m subsea. The reservoir is sealed by the overlying marine Belfast mudstone, which is the common seal in the stratigraphy across the onshore Otway Basin. The reservoir has excellent reservoir quality and has proved ideal for gas storage. Challenge Posed by the 1D MEM Challenge Posed by the 1D MEM Well 1 was recently drilled in the basin. A 1D MEM - a numerical representation of the geomechanical properties and stress state of the earth at any depth - was planned to be constructed to obtain the current-day far-field principal stresses (Shmin), effective maximum horizontal stress (SHmax), and effective vertical stress (SV)] in the Belfast and Waarre formations. Understanding the stress field was important, especially in the caprock (Belfast) and in the reservoir (Waarre) so that the pressure limits for safe gas-storage operation could be defined better. However, for a variety of reasons, no conventional stress measurements were available to calibrate the modeled stress in the 1D MEM. Without any calibration of the stress, the geomechanics model would feature high uncertainty to be used to define the pressure operational limits for gas-storage operation. Fortunately, a new wireline sonic tool was recorded in the reservoir section and the overburden sections of the borehole in Well 1. A quick dispersion analysis of the waveforms showed that the Paaratte formation, above the Belfast formation, was acoustically stress-sensitive and that advanced processing could be performed to invert the acoustic information to stress values.

2020 ◽  
Author(s):  
Zachariah John Pallikathekathil ◽  
Xing Wang Yang ◽  
Saeed Hafezy ◽  
Ratih Puspitasari ◽  
Rodney I. Harris ◽  
...  

2015 ◽  
Author(s):  
Fen Yang ◽  
Larry K. Britt ◽  
Shari Dunn-Norman

Abstract Since the late 1980's when Maersk published their work on multiple fracturing of horizontal wells in the Dan Field, the use of transverse multiple fractured horizontal wells has become the completion of choice and become the “industry standard” for unconventional and tight oil and tight gas reservoirs. Today approximately sixty percent of all wells drilled in the United States are drilled horizontally and nearly all of them are multiple fractured. Because a horizontal well adds additional cost and complexity to the drilling, completion, and stimulation of the well we need to fully understand anything that affects the cost and complexity. In other words, we need to understand the affects of the principal stresses, both direction and magnitude, on the drilling completion, and stimulation of these wells. However, little work has been done to address and understand the relationship between the principal stresses and the lateral direction. This paper has as its goal to fundamentally address the question, in what direction should I drill my lateral? Do I drill it in the direction of the maximum horizontal stress (longitudinal) or do I drill it in the direction of the minimum horizontal stress (transverse)? The answer to this question relates directly back to the title of this paper and please "Don't let your land man drive that decision." This paper focuses on the horizontal well's lateral direction (longitudinal or transverse fracture orientation) and how that direction influences productivity, reserves, and economics of horizontal wells. Optimization studies using a single phase fully three dimensional numeric simulator including convergent non-Darcy flow were used to highlight the importance of lateral direction as a function of reservoir permeability. These studies, conducted for both oil and gas, are used to identify the point on the permeability continuum where longitudinal wells outperform transverse wells. The simulations compare and contrast the transverse multiple fractured horizontal well to longitudinal wells based on the number of fractures and stages. Further, the effects of lateral length, fracture half-length, and fracture conductivity were investigated to see how these parameters affected the decision over lateral direction in both oil and gas reservoirs. Additionally, how does completion style affect the lateral direction? That is, how does an open hole completion compare to a cased hole completion and should the type of completion affect the decision on in what direction the lateral should be drilled? These simulation results will be used to discuss the various horizontal well completion and stimulation metrics (rate, recovery, and economics) and how the choice of metrics affects the choice of lateral direction. This paper will also show a series of field case studies to illustrate actual field comparisons in both oil and gas reservoirs of longitudinal versus transverse horizontal wells and tie these field examples and results to the numeric simulation study. This work benefits the petroleum industry by: Establishing well performance and economic based criteria as a function of permeability for drilling longitudinal or transverse horizontal wells,Integrating the reservoir objectives and geomechanic limitations into a horizontal well completion and stimulation strategy,Developing well performance and economic objectives for horizontal well direction (transverse versus longitudinal) and highlighting the incremental benefits of various completion and stimulation strategies.


Author(s):  
Nagham Jasim Al-Ameri

AbstractOptimum perforation location selection is  an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magnitude of different stress types and geomechanical properties was estimated from well-log data using the Techlog software. The directions of the horizontal stresses are determined in the current wells utilizing image-log formation micro-imager (FMI) and caliper logs. The results in terms of rock mechanical properties showed a reduction in Poisson’s ratio, Young modulus, and bulk modulus near the high-pressure zones as compared to normal pressure zones because of the presence of anhydrite, salt cycles, and shales. Low maximum and minimum horizontal stress values are also observed in high-pressure zones as compared to normal pressure zones indicating the effects of geomechanical properties on horizontal stress estimation. Around the wellbore of the studied wells, formation breakouts are the most expected situation according to the results of the wellbore stress state (effective vertical stress (σzz) > effective tangential stress (σθθ) > effective radial stress (σrr)).


2021 ◽  
Author(s):  
Debashis Konwar ◽  
Abhinab Das ◽  
Chandreyi Chatterjee ◽  
Fawz Naim ◽  
Chandni Mishra ◽  
...  

Abstract Borehole resistivity images and dipole sonic data analysis helps a great deal to identify fractured zones and obtain reasonable estimates of the in-situ stress conditions of geologic formations. Especially when assessing geologic formations for carbon sequestration feasibility, borehole resistivity image and borehole sonic assisted analysis provides answers on presence of fractured zones and stress-state of these fractures. While in deeper formations open fractures would favour carbon storage, in shallower formations, on the other hand, storage integrity would be potentially compromised if these fractures get reactivated, thereby causing induced seismicity due to fluid injection. This paper discusses a methodology adopted to assess the carbon dioxide sequestration feasibility of a formation in the Newark Basin in the United States, using borehole resistivity image(FMI™ Schlumberger) and borehole sonic data (SonicScaner™ Schlumberger). The borehole image was interpreted for the presence of natural and drilling-induced fractures, and also to find the direction of the horizontal stress azimuth from the identified induced fractures. Cross-dipole sonic anisotropy analysis was done to evaluate the presence of intrinsic or stress-based anisotropy in the formation and also to obtain the horizontal stress azimuth. The open or closed nature of natural fractures was deduced from both FMI fracture filling electrical character and the Stoneley reflection wave attenuation from SonicScanner monopole low frequency waveform. The magnitudes of the maximum and minimum horizontal stresses obtained from a 1-Dimensional Mechanical Earth Model were calibrated with stress magnitudes derived from the ‘Integrated Stress Analysis’ approach which takes into account the shear wave radial variation profiles in zones with visible crossover indications of dipole flexural waves. This was followed by a fracture stability analysis in order to identify critically stressed fractures. The borehole resistivity image analysis revealed the presence of abundant natural fractures and microfaults throughout the interval which was also supported by the considerable sonic slowness anisotropy present in those intervals. Stoneley reflected wave attenuation confirmed the openness of some natural fractures identified in the resistivity image. The strike of the natural fractures and microfaults showed an almost NE-SW trend, albeit with considerable variability. The azimuth of maximum horizontal stress obtained in intervals with crossover of dipole flexural waves was also found to be NE-SW in the middle part of the interval, thus coinciding with the overall trend of natural fractures. This might indicate that the stresses in those intervals are also driven by the natural fracture network. However, towards the bottom of the interval, especially from 1255ft-1380ft, where there were indications of drilling induced fractures but no stress-based sonic anisotropy, it was found that that maximum horizontal stress azimuth rotated almost about 30 degrees in orientation to an ESE-WNW trend. The stress magnitudes obtained from the 1D-Mechanical Earth Model and Integrated Stress Analysis approach point to a normal fault stress regime in that interval. The fracture stability analysis indicated some critically stressed open fractures and microfaults, mostly towards the lower intervals of the well section. These critically stressed open fractures and microfaults present at these comparatively shallower depths of the basin point to risks associated with carbon dioxide(CO2) leakage and also to induced seismicity that might result from the injection of CO2 anywhere in or immediately below this interval.


Geophysics ◽  
1994 ◽  
Vol 59 (6) ◽  
pp. 954-962 ◽  
Author(s):  
Michael S. Bruno ◽  
Don F. Winterstein

The azimuth of maximum horizontal stress in a reservoir can vary significantly with depth and with position on a subsurface structure. We present and discuss evidence from field data for such variation and demonstrate both analytically and with finite‐element modeling how such changes might take place. Under boundary conditions of uniform far‐field displacement, changes in stratigraphic layering can reorient the principal stress direction if the formation is intrinsically anisotropic. If the formation stiffness is lower perpendicular to bedding than parallel to bedding (as is often the case in layered geologic media), an increase in dip will reduce the component of compressive stress in the dip azimuth direction. Folds can reorient principal stresses because flexural strain varies with depth and position. Compressive stress perpendicular to a fold axis increases with depth at the crest of an anticline and decreases with depth at the limb. When the regional stress anisotropy is weak, this change in stress magnitude can reorient the local principal stress directions. Numerical simulations of such effects gave results consistent with changes in stress orientation at the Cymric and Lost Hills oil fields in California as observed via shear‐wave polarization analyses and tiltmeter surveys of hydraulic fracturing. Knowledge of such variation of stress direction with depth and structural position is critical for drilling, completions, hydraulic fracture, and well pattern designs.


2021 ◽  
Author(s):  
Sukru Merey ◽  
Can Polat ◽  
Tuna Eren

Abstract Currently, many horizontal wells are being drilled in Dadas shales of Turkey. Dadas shales have both oil (mostly) and gas potentials. Thus, hydraulic fracturing operations are being held to mobilize hydrocarbons. Up to 1000 m length horizontal wells are drilled for this purpose. However, there is not any study analyzing wellbore stability and reservoir geomechanics in the conditions of Dadas shales. In this study, the directions of horizontal wells, wellbore stability and reservoir geomechanics of Dadas shales were designed by using well log data. In this study, the python code developed by using Kirsch equations was developed. With this python code, it is possible to estimate unconfined compressive strength in along wellbore at different deviations. By analyzing caliper log, density and porosity logs of Dadas shales, vertical stress of Dadas shales was estimated and stress polygon for these shale was prepared in this study. Then, optimum direction of horizontal well was suggested to avoid any wellbore stability problems. According to the results of this study, high stresses are seen in horizontal directions. In this study, it was found that the maximum horizontal stress in almost the direction of North-South. The results of this study revealed that direction of maximum horizontal stress and horizontal well direction fluid affect the wellbore stability significantly. Thus, in this study, better horizontal well design was made for Dadas shales. Currently, Dadas shales are popular in Turkey because of its oil and gas potential so horizontal drilling and hydraulic fracturing operations are being held. However, in literature, there is no study about horizontal wellbore designs for Dadas shales. This study will be novel and provide information about the horizontal drilling design of Dadas shales.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xuelong Li ◽  
Shaojie Chen ◽  
Sheng Wang ◽  
Meng Zhao ◽  
Hui Liu

The variation of the in situ stress state is closely related to various factors. In situ stress state is also an important indicator to guide mining production. The study of in situ stress measurement and its distribution characteristics has always been a basic and very important work in mine production. In this study, the deep mines of Linyi Mining Area were considered as the research object. In this regard, the stress distribution law of each mine was studied. We found that the relationship between principal stresses was σH >  σ v  > σh, which belongs to the strike-slip stress regime. In this stress regime, the lateral Earth pressure coefficient was greater than one, and the magnitude of the three principal stresses all showed an increasing trend with the increase of depth. The maximum horizontal stress direction of the Gucheng Coal Mine, Guotun Coal Mine, and Pengzhuang Coal Mine was NW-SE under the influence of regional geological structure, while the maximum horizontal stress direction of Wanglou Coal Mine was NE-SW under the influence of local geological structure. Besides, the relationship between mine in situ stress and mine geological structure, the impact of original rock stress on stope stability, and the effect of original rock stress on floor water inrushing were also investigated. We believe that the research results are beneficial to mine disaster prevention and safety production.


2020 ◽  
Vol 46 (2) ◽  
pp. 77
Author(s):  
Michał Kępiński

The main objective of this study is to present calculation methods of horizontal stress profiles, taking into account the stress boundaries model, poro-elastic horizontal strain model and the effective stress ratio approach, using calibration with wellbore failure. The mechanical earth model (MEM) parameters from log measurements and well testing data were estimated for a well located in the southeastern part of the Upper Silesian Coal Basin. Log-derived horizontal stresses of the well are commonly treated as the final product of geomechanical modelling in oil and gas practices. A less popular method for estimating horizontal stresses is based on Kirsch equations juxtaposed with compressional and tensile failure observed on a micro-imager or six-arm caliper. Using this approach, horizontal stresses are determined based on the fact that when hoop stresses exceed the formation's tensile strength, tensile fractures are created, and when those stresses exceed the compressive strength of the formation, breakouts can be identified. The advantage of this method is that it can be run without in situ stress measurements. The presented workflow is recommended every time there is an image log and dipole sonic measurement in the available dataset, both being necessary to observe the failure zones and MEM.


Sign in / Sign up

Export Citation Format

Share Document