High Performance Friction Reducer for Slickwater Fracturing Applications: Laboratory Study and Field Implementation

2021 ◽  
Author(s):  
Ibrahim Al-Hulail ◽  
Oscar Arauji ◽  
Ali AlZaki ◽  
Mohamed Zeghouani

Abstract Proppant placement in a tight formation is extremely challenging. Therefore, using a high viscous friction reducer (HVFR) as a fracturing fluid for stimulation treatment in tight gas reservoirs is increasing within the industry because it can transport proppant, help reduce pipe friction generated during hydraulic-fracturing treatments, and efficiently clean up similar to the lower viscosity friction reducers (FRs). In this paper the implementation of the robust HVFR that is building higher viscosity at low concentrations, which minimizes energy loss and promotes turbulent flow within the pipe during the pumping of low viscosity, is discussed in detail. Performance evaluation of the new HVFR was conducted in the laboratory and compared to the lower viscosity FR. The study consisted of viscosity measurements at 70 and 180°F, compatibility with other additives, and proppant transport capabilities. Additionally, the viscosity generated from both FRs was compared using two water sources: water well A and treated sewage water. Viscosity measurements were performed across a wide range of FR and HVFR concentrations and under varying shear rates using a digital viscometer. To validate drag reduction capabilities for this HVFR in the field, the same groundwater with low salinity and low total dissolved solids (TDS) content were used for comparison purposes. The test plan for this new HVFR was for a well to be drilled to a total depth of 17,801 ft MD (10,693 ft TVD) with a 6,016-ft lateral section. Another part of the plan was to complete 41 stages—the first stage with the toe initiator, and subsequent stages using ball drops until Stage 8, were completed using the current FR. For Stage 8, the drag reduction from the new HVFR was evaluated against the current FR only during the pad stage. Then, FR or HVFR concentrations were used, with a gradual reduction from 2 to 1 gpt without compromising proppant placement from stages 9 to 37, alternating current FR and the new HVFR every four stages. From Stage 38 to 41, the same approach was used but with treated sewage water and alternating every other stage using current FR or HVFR at 1gpt. The implementation of the new HVFR showed better friction reduction when using the same concentration of the current FR. Also, achieving better average treating pressures with lower concentration. Based on that it is a cost-effective solution and the performance is better, this lead to reduce the HVFR volume to be pumped per stage compared to the current FR. Applications/Significance/Novelty For this study, drag reduction capabilities for this new HVFR were validated in the field at higher pumping rate conditions, potentially optimizing (reducing) the polymer concentration during a freshwater application. It was shown that lower concentrations of this HVFR provided higher viscosity, which helps improve proppant transport and operation placement.

2019 ◽  
Author(s):  
Liang Xu ◽  
James Ogle ◽  
Todd Collier ◽  
Ian Straffin ◽  
Teddy Dubois ◽  
...  

1980 ◽  
Vol 102 (4) ◽  
pp. 439-444 ◽  
Author(s):  
H. Fukayama ◽  
M. Tanaka ◽  
Y. Hori

The friction reduction by dilute polymer solutions is investigated experimentally in turbulent journal bearings. The effects of polymer substances, polymer concentration, bearing clearance, and journal eccentricity on friction reduction are examined over the wide range of Reynolds number in the superlaminar regime. In the experiments, the friction of polymer solution is less than 40 percent of that of Newtonian turbulent flow under the best conditions. The calculated friction factor for the Couette flow is in good agreement with the corresponding measured one. Degradation of highpolymer is also investigated experimentally, and is found to be affected by polymer concentration.


1981 ◽  
Vol 103 (4) ◽  
pp. 491-496 ◽  
Author(s):  
J. T. Kuo ◽  
L. S. G. Kovasznay

A novel flow configuration was explored for the study of the behavior of drag reducing polymers. A screw pump consisting of a smooth cylinder and a concentrically placed screw was used to create a strongly three-dimensional but essentially laminar flow. In the first phase of the study, the static pressure head developed by the screw pump was measured as a function of polymer concentration (polyox 10 to 100 ppm in water). A large increase of the developed head was observed that behaved in an analogous manner to drag reduction as far as concentration and straining of the polymer solution was concerned. In the second phase of the study, a new apparatus was constructed and the additional parameter of a superimposed through flow was included and the degree of failure of the superposition principle was established. Sensitivity of the phenomenon to chemicals like HCl, HNO3, and NaOH in the polymer solution was also studied. When the effect of these chemicals on the polymer solution flow behavior was presented in terms of the pH value of the polymer solution, it showed a similar trend to those observed in drag reduction.


2021 ◽  
Author(s):  
G. Garcin ◽  
F. Delloro ◽  
M. Jeandin ◽  
J-F. Hochepied ◽  
C. Grente ◽  
...  

Abstract One of the main levers to reduce CO2 emissions in cars and trucks is mass and friction reduction, which is often achieved through the use of special coatings. The aim of the present work was to develop metal-ceramic-lubricant composite coatings with the best combination of wear, seizure, fatigue, and thermal resistance. Metal-based coatings incorporating hard particles and solid lubricants were cold sprayed onto steel substrates and the relationship between coating microstructure and tribology was studied. To meet the demanding tribological requirements of heavily loaded engines, the interfaces between the different components were optimized by selecting appropriate feedstock powders and assessing a wide range of process parameters. Alumina-reinforced bronze composite coatings were made from powders with different morphologies. Aggregated ceramic powders were found to be more beneficial in terms of wear than massive powders, and graphite was found to be effective for reducing seizure.


2004 ◽  
Vol 5 (1) ◽  
pp. 155-161 ◽  
Author(s):  
A.A. Aganga ◽  
S. Machacha . ◽  
B. Sebolai . ◽  
T. Thema . ◽  
B.B. Marotsi .
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document