A Corresponding States Correlation for Calculating Gas-Condensate Phase Equilibria

1968 ◽  
Vol 8 (03) ◽  
pp. 281-292 ◽  
Author(s):  
Alan S. Emanuel

Abstract A correlation has been developed for calculating the phase behavior of gas-condensate systems at reservoir conditions. The correlation is based on the principle of corresponding states and has been coded for an IBM 7094. Experimental K-values were determined for several gas-condensate systems at reservoir conditions to evaluate various semiempirical parameters of the correlation. The approximate range of application of the correlation is 150 to 300F and 1,500 to 6,000 psi. Introduction The rapid development of digital computers during the past several years has made feasible the calculation of hydrocarbon phase behavior by methods based on rigorous thermodynamic principles. Good correlations have been developed for low to moderate pressures, but these techniques have not yet been extended successfully to reservoir fluids at high pressures. Consequently, the determination of phase behavior of oil and gas systems at reservoir conditions is still based almost entirely on generalized data correlations or on experimental studies of the fluid in question. While these methods have been used successfully many times, they do have inherent limitations that restrict their applicability. Generalized correlations, such as the NGSMA K-charts, are limited to the range of pressure, temperature and components for which pressure, temperature and components for which the data were determined. The accuracy of these correlations is often questionable because the effect of total system composition is not well defined. Experimental studies offer a reliable method for determining phase behavior, but usually the studies are costly and time consuming. Recently, Leland and coworkers presented a new approach to calculating phase behavior from the principles of corresponding states. Corresponding states methods determine the thermodynamics properties of a given system by comparison with a reference substance whose properties are known. The accuracy of data properties are known. The accuracy of data approach depends on close chemical and structural similarity between the reference substance and the system in question and between components within the system itself. For high accuracy, it is usually necessary to correct for chemical and structural dissimilarities. In principle, however, the corresponding states method should be no less accurate at high pressures than at low pressures, provided reference substance properties are known. provided reference substance properties are known. This paper describes an empirical modification of the basic correlation proposed by Leland, et al. for the specific purpose of calculating the phase behavior of gas-condensate fluids at reservoir conditions. The modified correlation, which has been Programmed for an IBM 7094, may be used for either approximate or precise determination of fluid behavior depending on the amount of analytical and, experimental data available for the system. BASIC THEORY The basic theory of the corresponding states phase equilibria correlation was first published by phase equilibria correlation was first published by Leland, Chappelear and Gamson. Subsequently, Leland, Chappelear and Leach published methods for improving me accuracy of the original theory. The aim of the correlation is to calculate the K-value of each component of a given system as a function of pressure, temperature, and over-all composition, where ..........................................(1) Once the K-values are known, the phase behavior may be determined directly by an appropriate flash calculation. The basic equation for calculating component K-values was taken from the work of Joffe. For any component i of a mixture, the K-value is given by ..........................................(2) SPEJ P. 281

2021 ◽  
pp. 4-12
Author(s):  

Experimental studies have revealed a significant impact of deformation of Сommon Rail injector parts on the fuel supply process. High pressures alter the structure of the fuel supply cy-cle. Theforward front of the fuel supply cycle begins with the stage of unloading the deformed parts of the injector. The rear front of the fuel supply cycle ends with the stage of deformation of the injector parts. The calculated and experimental determination of cyclic fuel supply gave similar results. The developed method of determining the duration of the injection cycle stages creates a basis for experimental verification of mathematical models. Keywords: injector, Common Rail, diesel, fuel system, electronic control, needle, fuel injection


2020 ◽  
Author(s):  
Catinca Secuianu ◽  
Sergiu Sima

Carbon dioxide (CO2) is an important material in many industries but is also representing more than 80% of greenhouse gases (GHGs). Anthropogenic carbon dioxide accumulates in the atmosphere through burning fossil fuels (coal, oil, and natural gas) in power plants and energy production facilities, and solid waste, trees, and other biological materials. It is also the result of certain chemical reactions in different industry (e.g., cement and steel industries). Carbon capture and storage (CCS), among other options, is an essential technology for the cost-effective mitigation of anthropogenic CO2 emissions and could contribute approximately 20% to CO2 emission reductions by 2050, as recommended by International Energy Agency (IEA). Although CCS has enormous potential in numerous industries and petroleum refineries due their large CO2 emissions, a significant impediment to its utilization on a large scale remains both operating and capital costs. It is possible to reduce the costs of CCS for the cases where industrial processes generate pure or rich CO2 gas streams, but they are still an obstacle to its implementation. Therefore, significant interest was dedicated to the development of improved sorbents with increased CO2 capacity and/or reduced heat of regeneration. However, recent results show that phase equilibria, transport properties (e.g., viscosity, diffusion coefficients, etc.) and other thermophysical properties (e.g., heat capacity, density, etc.) could have a significant effect on the price of the carbon. In this context, we focused our research on the phase behavior of physical solvents for carbon dioxide capture. We studied the phase behavior of carbon dioxide and different classes of organic substances, to illustrate the functional group effect on the solvent ability to dissolve CO2. In this chapter, we explain the role of phase equilibria in carbon capture and storage. We describe an experimental setup to measure phase equilibria at high-pressures and working procedures for both phase equilibria and critical points. As experiments are usually expensive and very time consuming, we present briefly basic modeling of phase behavior using cubic equations of state. Phase diagrams for binary systems at high-pressures and their construction are explained. Several examples of phase behavior of carbon dioxide + different classes of organic substances binary systems at high-pressures with potential role in CCS are shown. Predictions of the global phase diagrams with different models are compared with experimental literature data.


2021 ◽  
Author(s):  
Yibo Yang ◽  
Teresa Regueira ◽  
Hilario Martin Rodriguez ◽  
Alexander Shapiro ◽  
Erling Halfdan Stenby ◽  
...  

Abstract Molecular diffusion plays a critical role in gas injection in tight reservoirs such as liquid-rich shale. Despite recent efforts on measuring diffusion coefficients at high pressures, there is a general lack of the diffusion coefficients in live oil systems at reservoir conditions relevant to the development of these tight reservoirs. The reported diffusion coefficients often differ in orders of magnitude, and there is no consensus on the reliability of the common correlations for liquid phase diffusion coefficients, such as the extended Sigmund correlation. We employed the constant volume diffusion method to measure the high-pressure diffusion coefficients in a newly designed high-pressure tube. The experimental method was first validated using methane + hexadecane and methane + decane, and then used to measure the methane diffusion coefficients in two live oils at reservoir conditions. The obtained data were processed by compositional simulation to determine the diffusion coefficients. The diffusion coefficients measured for methane + hexadecane and methane + decane are in agreement with the existing literature data. For methane + live oil systems, however, the diffusion coefficients estimated by the extended Sigmund correlation are much lower than the measured results. An over ten times adjustment is needed to best fit the pressure decay curves. A further check reveals that for live oil systems, the reduced densities are often in the extrapolated region of the original Sigmund model. The curve in this region of the extended Sigmund correlation has a weak experimental basis, which may be the reason for its large deviation. The estimates from other correlations like Wilke-Chang and Hayduk-Minhas also give very different results. We compared the diffusion coefficients in high-pressure oils reported in the literature, showing a large variation in the reported values. All these indicate the necessity for further study on accurate determination of high-pressure diffusion coefficients in live oils of relevance to shale and other tight reservoirs.


2014 ◽  
Vol 60 (2) ◽  
pp. 398-402 ◽  
Author(s):  
Alireza Shariati ◽  
Geert H. Lameris ◽  
Cor J. Peters

1986 ◽  
Vol 1 (01) ◽  
pp. 9-15 ◽  
Author(s):  
J.F. Gravier ◽  
P. Lemouzy ◽  
C. Barroux ◽  
A.F. Abed

Problems when calculating reinforced concrete structures based on the concrete deformation under compression diagram, which is presented both in Russian and foreign regulatory documents on the design of concrete and reinforced concrete structures are considered. The correctness of their compliance for all classes of concrete remains very approximate, especially a significant difference occurs when using Euronorm due to the different shape and sizes of the samples. At present, there are no methodical recommendations for determining the ultimate relative deformations of concrete under axial compression and the construction of curvilinear deformation diagrams, which leads to limited experimental data and, as a result, does not make it possible to enter more detailed ultimate strain values into domestic standards. The results of experimental studies to determine the ultimate relative deformations of concrete under compression for different classes of concrete, which allowed to make analytical dependences for the evaluation of the ultimate relative deformations and description of curvilinear deformation diagrams, are presented. The article discusses various options for using the deformation model to assess the stress-strain state of the structure, it is concluded that it is necessary to use not only the finite values of the ultimate deformations, but also their intermediate values. This requires reliable diagrams "s–e” for all classes of concrete. The difficulties of measuring deformations in concrete subjected to peak load, corresponding to the prismatic strength, as well as main cracks that appeared under conditions of long-term step loading are highlighted. Variants of more accurate measurements are proposed. Development and implementation of the new standard GOST "Concretes. Methods for determination of complete diagrams" on the basis of the developed method for obtaining complete diagrams of concrete deformation under compression for the evaluation of ultimate deformability of concrete under compression are necessary.


2020 ◽  
Vol 13 (2) ◽  
pp. 105-109
Author(s):  
E. S. Dremicheva

This paper presents a method of sorption using peat for elimination of emergency spills of crude oil and petroleum products and the possibility of energy use of oil-saturated peat. The results of assessment of the sorbent capacity of peat are presented, with waste motor oil and diesel fuel chosen as petroleum products. Natural peat has been found to possess sorption properties in relation to petroleum products. The sorbent capacity of peat can be observed from the first minutes of contact with motor oil and diesel fuel, and significantly depends on their viscosity. For the evaluation of thermal properties of peat saturated with petroleum products, experimental studies have been conducted on determination of moisture and ash content of as-fired fuel. It is shown that adsorbed oil increases the moisture and ash content of peat in comparison with the initial sample. Therefore, when intended for energy use, peat saturated with petroleum products is to be subjected to additional drying. Simulation of net calorific value has been performed based on the calorific values of peat and petroleum products with different ratios of petroleum product content in peat and for a saturated peat sample. The obtained results are compared with those of experiments conducted in a calorimetric bomb and recalculated for net calorific value. A satisfactory discrepancy is obtained, which amounts to about 12%. Options have been considered providing for combustion of saturated peat as fuel (burnt per se and combined with a solid fuel) and processing it to produce liquid, gaseous and solid fuels. Peat can be used to solve environmental problems of elimination of emergency spills of crude oil and petroleum products and as an additional resource in solving the problem of finding affordable energy.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


Sign in / Sign up

Export Citation Format

Share Document