Technology for Determining the Inflow from Near and Far Zones of Fractures During Hydraulic Fracturing by Chemical Tracers in a Production Well

2021 ◽  
Author(s):  
Maksim Filev ◽  
Vadim Soldatov ◽  
Igor Novikov ◽  
Jianhua Xu ◽  
Kirill Ovchinnikov ◽  
...  

Abstract The tracer-based production logging technology can be used to obtain the well production data continuously for several years without the need for risky well interventions and expensive equipment. The paper examines the case of placing polymer-coated tracers dopped proppant in a horizontal well with ten multi-stage frac intervals and using two different tracers dopped proppant codes for two frac ports (the first and the last ones) to identify the performance of the far and near zones of a hydraulic fracture. Upon the completion of the hydraulic fracturing operations, the collected reservoir fluid samples were studied in the laboratory. Chemical tracers contained in the samples were detected by flow cytofluorometry using custom-tailored machine learning-based software. The studies helped identify the productivity of each frac port, calculate the contribution of each port in percentage points, and also evaluate the productivity of the near and far hydraulic fracture zones in the first and the last intervals. The analysis provided data on the exact content of oil and water in the production profile for each frac interval. The results of tracer-based logging in the well in question revealed that the interval productivity is changing in the course of several months of surveillance. The most productive ports and those showing increasing oil flow rate were identified during quantitative analysis. The use of tracer dopped proppant with different codes within one multi-stage frac interval enabled detecting a peak release of chemical tracers from the far fracture zone in the initial periods of well operation followed by a consistent smoothing of the far and near zones’ production profiles. Laboratory analysis of reservoir fluid samples and hydraulic fracturing simulations proved the uniform distribution of proppant across the entire reservoir pay zone and laid the foundation for further research required to better understand the fracture geometry and reduce uncertainties in production optimization operations.

2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


1982 ◽  
Vol 22 (03) ◽  
pp. 321-332 ◽  
Author(s):  
M.E. Hanson ◽  
G.D. Anderson ◽  
R.J. Shaffer ◽  
L.D. Thorson

Abstract We are conducting a U.S. DOE-funded research program aimed at understanding the hydraulic fracturing process, especially those phenomena and parameters that strongly affect or control fracture geometry. Our theoretical and experimental studies consistently confirm the well-known fact that in-situ stress has a primary effect on fracture geometry, and that fractures propagate perpendicular to the least principal stress. In addition, we find that frictional interfaces in reservoirs can affect fracturing. We also have quantified some effects on fracture geometry caused by frictional slippage along interfaces. We found that variation of friction along an interface can result in abrupt steps in the fracture path. These effects have been seen in the mineback of emplaced fractures and are demonstrated both theoretically and in the laboratory. Further experiments and calculations indicate possible control of fracture height by vertical change in horizontal stresses. Preliminary results from an analysis of fluid flow in small apertures are discussed also. Introduction Hydraulic fracturing and massive hydraulic fracturing (MHF) are the primary candidates for stimulating production from tight gas reservoirs. MHF can provide large drainage surfaces to produce gas from the low- permeability formation if the fracture surfaces remain in the productive parts of the reservoir. To determine whether it is possibleto contain these fractures in the productive formations andto design the treatment to accomplish this requires a much broader knowledge of the hydraulic fracturing process. Identification of the parameters controlling fracture geometry and the application of this information in designing and performing the hydraulic stimulation treatment is a principal technical problem. Additionally, current measurement technology may not be adequate to provide the required data. and new techniques may have to be devised. Lawrence Livermore Natl. Laboratory has been conducting a DOE-funded research program whose ultimate goal is to develop models that predict created hydraulic fracture geometry within the reservoir. Our approach has been to analyze the phenomenology of the fracturing process to son out and identify those parameters influencing hydraulic fracture geometry. Subsequent model development will incorporate this information. Current theoretical and stimulation design models are based primarily on conservation of mass and provide little insight into the fracturing process. Fracture geometry is implied in the application of these models. Additionally, pressure and flow initiation in the fractures and their interjection with the fracturing process is not predicted adequately with these models. We have reported previously on some rock-mechanics aspects of the fracturing process. For example, we have studied, theoretically and experimentally, pressurized fracture propagation in the neighborhood of material interfaces. Results of interface studies showed that natural fractures in the interfacial region negate any barrier effect when the fracture is propagating from a lower modulus material toward a higher modulus material. On the other hand, some fracture containment could occur when the fracture is propagating from a higher modulus into a lower modulus material. Effect of moduli changes on the in-situ stress field have to be taken into consideration to evaluate fracture containment by material interfaces. Some preliminary analyses have been performed to evaluate how stress changes when material properties change, but we have not evaluated this problem fully. SPEJ P. 321^


2021 ◽  
Author(s):  
Akram R. Barghouti ◽  
M. Imran Javed ◽  
Saud A Al-Shuwaier

Abstract The revolution of smart well completions has been significantly enhancing the oil & gas industry in the recent years, The completions allow for higher PIs, better sweep, longer well life, longer reservoir contact and better water management. These effects came into play and needed once O&G industry moved to drilling multi-lateral wells. This paper represents a tri-lateral well that was drilled with high reservoir contact. The production optimization was completed to evaluate the contribution of each lateral and decide on the future production strategy for the well. This evaluation also allowed to test the functionality of the Down Hole Flow Control Valves (DHFCVs). Further, determining this functionality allowed identifying cross flow between the ICVs and the laterals. The optimization included multi-stage testing of each lateral to ascertain the high oil & water contributors. The water contribution was recorded across each lateral to optimize the water production and enhance the well productivity. The productivity index was calculated using IPR modeling utilizing Pipe-Sim software based on the commingled multi-rate tests. To further plan the way forward on the well production, a flowchart was established during the optimization operation to guide through the optimization process, identify each lateral water contribution, and production strategy after the operation. This optimization has resulted in a significant cost avoidance, avoiding coil tubing horizontal logging intervention operations in all the three laterals. The details of the testing stages scenarios and the recommendations of the production strategies will be shared in this paper.


2013 ◽  
Author(s):  
Marie Van Steene ◽  
Magdalena Povstyanova ◽  
Mahmoud Gamal Semary ◽  
Anil Kumar Mathur ◽  
Aziza Ali ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Zhihong Zhao ◽  
Jianchun Guo ◽  
Shou Ma

Hydraulic fracture propagation characteristics in glutenite formation are studied by a series of servo-controlled triaxial large-scale fracturing experiments. The experimental results show that the fractures extend along the gravel and sandstone cementing face, and fracture geometry in glutenite formation is complex, which is similar to network fractures. The phenomenon of the gravel being split has not been observed. In the process of the fracture extension, the extension pressure is fluctuating, and the degree of fluctuation is more drastic with the gravel diameter increase. This paper suggests that using large rate and multislug technology would increase the flow ability of the carrying fluid. The conclusions are significant to hydraulic fracturing in glutenite formation.


Author(s):  
Mohamed Ali Khalil ◽  
Abdunaser Omar Susi

This study aims to provide a comprehensive review of all hydraulic fracture geometry modeling techniques available in the conventional and unconventional reservoirs. We are introducing a comparison study between major available hydraulic fracture modeling techniques, advantages, and disadvantages of each one according to the latest related studies. The study includes the three general families of models: 2D models, pseudo-3D models, and fully 3D models. Consequently, the results of this work can be used for selecting the proper model to simulate or stimulate the reservoir to enhance oil recovery using hydraulic fracturing. Also, these results can be used for any future updates related to hydraulic fracturing stimulation based on the comparisons that were conducted.


2022 ◽  
Author(s):  
Dmitrii Smirnov ◽  
Omar AL Isaee ◽  
Alexey Moiseenkov ◽  
Abdullah Al Hadhrami ◽  
Hilal Shabibi ◽  
...  

Abstract Pre-Cambrian South Oman tight silicilyte reservoirs are very challenging for the development due to poor permeability less than 0.1 mD and laminated texture. Successful hydraulic fracturing is a key for the long commercial production. One of the main parameter for frac planning and optimization is fracture geometry. The objective of this study was summarizing results comparison from different logging methods and recommended best practices for logging program targeting fracture geometry evaluation. The novel method in the region for hydraulic fracture height and orientation evaluation is cross-dipole cased hole acoustic logging. The method allows to evaluate fracture geometry based on the acoustic anisotropy changes after frac operations in the near wellbore area. The memory sonic log combined with the Gyro was acquired before and after frac operations in the cased hole. The acoustic data was compared with Spectral Noise log, Chemical and Radioactive tracers, Production Logging and pre-frac model. Extensive logging program allow to complete integrated evaluation, define methods limitations and advantages, summarize best practices and optimum logging program for the future wells. The challenges in combining memory cross-dipole sonic log and gyro in cased hole were effectively resolved. The acoustic anisotropy analysis successfully confirms stresses and predominant hydraulic fractures orientation. Fracture height was confirmed based on results from different logging methods. Tracers are well known method for the fracture height evaluation after hydraulic frac operations. The Spectral Noise log is perfect tool to evaluate hydraulically active fracture height in the near wellbore area. The combination of cased hole acoustic and noise logging methods is a powerful complex for hydraulic fracture geometry evaluation. The main limitations and challenges for sonic log are cement bond quality and hole conditions after frac operations. Noise log has limited depth of investigation. However, in combination with production and temperature logging provides reliable fit for purpose capabilities. The abilities of sonic anisotropy analysis for fracture height and hydraulic fracture orientation were confirmed. The optimum logging program for fracture geometry evaluation was defined and recommended for replication in projects were fracture geometry evaluation is required for hydraulic fracturing optimization.


2013 ◽  
Vol 32 (2) ◽  
pp. 150-157 ◽  
Author(s):  
A. R. Baghbanan ◽  
M. Parvazdavani ◽  
S. Abbasi ◽  
A. R. Rahnama

2020 ◽  
Author(s):  
Avinash Wesley ◽  
Bharat Mantha ◽  
Ajay Rajeev ◽  
Aimee Taylor ◽  
Mohit Dholi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document