Integration of Self Organizing Map and Date Driven Methods to Predict Oil Formation Volume Factor: North Africa Crude Oil Examples

2021 ◽  
Author(s):  
Gamal Alusta ◽  
Hossein Algdamsi ◽  
Ahmed Amtereg ◽  
Ammar Agnia ◽  
Ahmed Alkouh ◽  
...  

Abstract In this paper we introduce for the first time an innovative approach for deriving Oil Formation Volume Factor (Bo) by mean of artificial intelligence method. In a new proposed application Self-Organizing Map (SOM) technology has been merged with statistical prediction methods integrating in a single step dimensionality reduction, extraction of input data structure pattern and prediction of formation volume factor Bo. The SOM neural network method applies an unsupervised training algorithm combined with back propagation neural network BPNN to subdivide the entire set of PVT input into different patterns identifying a set of data that have something in common and run individual MLFF ANN models for each specific PVT cluster and computing Bo. PVT data for more than two hundred oil samples (total of 804 data points) were collected from the north African region representing different basin and covering a greater geographical area were used in this study. To establish clear Bound on the accuracy of Bo determination several statistical parameters and terminology included in the presentation of the result from SOM-Neural Network solution. the main outcome is the reduction of error obtained by the new proposed competitive Learning Structure integration of SOM and MLFF ANN to less than 1 % compared to other method. however also investigated in this work five independents means of model driven and data driven approach for estimating Bo theses are 1) Optimal Transformations for Multiple Regression as introduced by (McCain, 1998) using alternating conditional expectations (ACE) for selecting multiple regression transformations 2), Genetic programing and heuristic modeling using Symbolic Regression (SR) and cross validation for model automatic tuning 3) Machine learning predictive model (Nearest Neighbor Regression, Kernel Ridge regression, Gaussian Process Regression (GPR), Random Forest Regression (RF), Support Vector Regression (SVM), Decision Tree Regression (DT), Gradient Boosting Machine Regression (GBM), Group modeling data handling (GMDH). Regression Model Accuracy Metrics (Average absolute relative error, R-square), diagnostic plot was used to address the more adequate techniques and model for predicting Bo.

Author(s):  
SUNG-BAE CHO

Bioinformatics has recently drawn a lot of attention to efficiently analyze biological genomic information with information technology, especially pattern recognition. In this paper, we attempt to explore extensive features and classifiers through a comparative study of the most promising feature selection methods and machine learning classifiers. The gene information from a patient's marrow expressed by DNA microarray, which is either the acute myeloid leukemia or acute lymphoblastic leukemia, is used to predict the cancer class. Pearson's and Spearman's correlation coefficients, Euclidean distance, cosine coefficient, information gain, mutual information and signal to noise ratio have been used for feature selection. Backpropagation neural network, self-organizing map, structure adaptive self-organizing map, support vector machine, inductive decision tree and k-nearest neighbor have been used for classification. Experimental results indicate that backpropagation neural network with Pearson's correlation coefficients produces the best result, 97.1% of recognition rate on the test data.


2013 ◽  
Vol 5 (4) ◽  
Author(s):  
Parisa Bagheripour ◽  
Mojtaba Asoodeh ◽  
Ali Asoodeh

AbstractOil formation volume factor (FVF) is considered as relative change in oil volume between reservoir condition and standard surface condition. FVF, always greater than one, is dominated by reservoir temperature, amount of dissolved gas in oil, and specific gravity of oil and dissolved gas. In addition to limitations on reliable sampling, experimental determination of FVF is associated with high costs and time-consumption. Therefore, this study proposes a novel approach based on hybrid genetic algorithm-pattern search (GA-PS) optimized neural network (NN) for fast, accurate, and cheap determination of oil FVF from available measured pressure-volume-temperature (PVT) data. Contrasting to traditional neural network which is in danger of sticking in local minima, GA-PS optimized NN is in charge of escaping from local minima and converging to global minimum. A group of 342 data points were used for model construction and a group of 219 data points were employed for model assessment. Results indicated superiority of GA-PS optimized NN to traditional NN. Oil FVF values, determined by GA-PS optimized NN were in good agreement with reality.


2014 ◽  
Vol 563 ◽  
pp. 308-311 ◽  
Author(s):  
Yu Lian Jiang

For a water polo ball game there are multiple water polos and multiple robotic fishes in each team, seeking a reasonable task allocation plan is the key point to win the game. To resolve the problem, this paper proposed a multi-target task allocation method based on the Self-organizing map (SOM) neural network. This method takes the position of the water polos as the input vector, competes and compares the position of the water polos and robotic fishes, outputs the corresponding robotic fish of each water polo. The robotic fish will move toward the target water polo when the weight was adjusted, and will finally reach the target water polo. Simulations show that the score of the team using this method is higher than another team. The results prove the correctness and reliability of this method.


1999 ◽  
Vol 2 (03) ◽  
pp. 255-265 ◽  
Author(s):  
Ridha B.C. Gharbi ◽  
Adel M. Elsharkawy

Summary The importance of pressure/volume/temperature (PVT) properties, such as the bubblepoint pressure, solution gas-oil ratio, and oil formation volume factor, makes their accurate determination necessary for reservoir performance calculations. An enormous amount of PVT data has been collected and correlated over many years for different types of hydrocarbon systems. Almost all of these correlations were developed with linear or nonlinear multiple regression or graphical techniques. Artificial neural networks, once successfully trained, offer an alternative way to obtain reliable results for the determination of crude oil PVT properties. In this study, we present neural-network-based models for the prediction of PVT properties of crude oils from the Middle East. The data on which the network was trained represent the largest data set ever collected to be used in developing PVT models for Middle East crude oils. The neural-network model is able to predict the bubblepoint pressure and the oil formation volume factor as a function of the solution gas-oil ratio, the gas specific gravity, the oil specific gravity, and the temperature. A detailed comparison between the results predicted by the neural-network models and those predicted by other correlations are presented for these Middle East crude-oil samples. Introduction In absence of experimentally measured pressure/volume/temperature (PVT) properties, two methods are widely used. These methods are equation of state (EOS) and PVT correlations. The equation of state is based on knowing the detailed compositions of the reservoir fluids. The determination of such quantities is expensive and time consuming. The equation of state involves numerous numerical computations. On the other hand, PVT correlations are based on easily measured field data: reservoir pressure, reservoir temperature, oil, and gas specific gravity. In the petroleum process industries, reliable experimental data are always to be preferred over data obtained from correlations. However, very often reliable experimental data are not available, and the advantage of a correlation is that it may be used to predict properties for which very little experimental information is available. The importance of accurate PVT data for material-balance calculations is well understood. It is crucial that all calculations in reservoir performance, in production operations and design, and in formation evaluation be as good as the PVT properties used in these calculations. The economics of the process also depends on the accuracy of such properties. The development of correlations for PVT calculations has been the subject of extensive research, resulting in a large volume of publications.1–10 Several graphical and mathematical correlations for determining the bubblepoint pressure (Pb) and the oil formation volume factor (Bob) have been proposed during the last five decades. These correlations are essentially based on the assumption that P b and Bob are strong functions of the solution gas-oil ratio (Rs) the reservoir temperature (T), the gas specific gravity (?g) and the oil specific gravity (?o) or P b = f 1 ( R s , T , γ g , γ o ) , ( 1 ) B o b = f 2 ( R s , T , γ g , γ o ) . ( 2 ) In 1947, Standing1 presented graphical correlations for the determination of bubblepoint pressure (Pb) and the oil formation volume factor (Bob) In developing these correlations, Standing used 105 experimentally measured data points from 22 different crude-oil and gas mixtures from California oil fields. Average relative errors of 4.8% and of 1.17% were reported for Pb and Bob respectively. Later, in 1958, Lasater9 developed an empirical equation based on Henry's law for estimating the bubblepoint pressure. He correlated the mole fraction of gas in solution to a bubblepoint pressure factor. A total of 137 crude-oil and gas mixtures from North and South America was used for developing this correlation. An average error of 3.8% was reported. Lasater did not present a correlation for Bob In 1980, two sets of correlations were reported, one by Vasquez and Beggs10 and the other by Glasø.7 Vasquez and Beggs used 600 data points from various locations all over the world to develop correlations for Pb and Bob. Two different types of correlations were presented, one for crudes with °API>30 and the other for crudes with °API 30. An average error of 4.7% was reported for their correlation of Bob Glasø used a total of 45 oil samples from the North Sea to develop his correlations for calculating Pb and Bob. He reported an average error of 1.28% for the bubblepoint pressure and ?0.43% for the formation volume factor. Recently, Al-Marhoun4 used 160 experimentally determined data points from the PVT analysis of 69 Middle Eastern hydrocarbon mixtures to develop his correlations. Average errors of 0.03% and ?0.01% were reported for Pb and Bob respectively. Dokla and Osman6 used a total of 50 data points from reservoirs in the United Arab Emirates to develop correlations for Pb and Bob. They reported an average error of 0.45% for the bubblepoint pressure and 0.023% for the formation volume factor. The conventional approach to develop PVT correlations is based on multiple-regression techniques. An alternative approach will be to use an artificial neural network (ANN). PVT models based on a successfully trained ANN can be excellent, reliable tools for the prediction of crude-oil PVT properties. The massive interconnections in the ANN produces a large number of degrees of freedom, or fitting parameters, and thus may allow it to capture the system's nonlinearity better than conventional regression techniques. Recently, artificial neural networks have found use in a number of areas in petroleum engineering.11–20 The objective of this study is to use ANNs to develop accurate PVT correlations for Middle East crude oil to estimate Pb and Bob as functions of Rs, T, ?g, ?o. With additional experimental data, the neural-network model can be further refined to incorporate these new data. In addition, in this article we evaluate the accuracy of the ANN models developed in this study compared to other PVT correlations.


2021 ◽  
Author(s):  
Itoro Udofort Koffi

Abstract Accurate knowledge of Pressure-Volume-Temperature (PVT) properties is crucial in reservoir and production engineering computational applications. One of these properties is the oil formation volume factor (Bo), which assumes a significant role in calculating some of the prominent petroleum engineering terms and parameters, such as depletion rate, oil in place, reservoir simulation, material balance equation, well testing, reservoir production calculation, etc. These properties are ideally measured experimentally in the laboratory, based on downhole or recommended surface samples. Faster and cheaper methods are important for real-time decision making and empirically developed correlations are used in the prediction of this property. This work is aimed at developing a more accurate prediction method than the more common methods. The prediction method used is based on a supervised deep neural network to estimate oil formation volume factor at bubble point pressure as a function of gas-oil ratio, gas gravity, specific oil gravity, and reservoir temperature. Deep learning is applied in this paper to address the inaccuracy of empirically derived correlations used for predicting oil formation volume factor. Neural Networks would help us find hidden patterns in the data, which cannot be found otherwise. A multi-layer neural network was used for the prediction via the anaconda programming environment. Two frameworks for modelling data using deep learning viz: TensorFlow and Keras were utilized, and PVT variables selected as input neurons while employing early stopping which uses a part of our data not fed to the model to test its performance to prevent overfitting. In the modelling process, 2994 dataset retrieved from the Niger Delta region was used. The dataset was randomly divided into three parts of which 60% was used for training, 20% for validation, and 20% for testing. The result predicted by the network outperformed existing correlations by the statistical parameters used for the same set of field data. The network has a mean average error of 0.05 which is the lowest when compared to the error generated by other correlation models. The predictive capability of this network is found to be higher than existing models, based on the findings of this work.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Khaled Ben Khalifa ◽  
Ahmed Ghazi Blaiech ◽  
Mohamed Hédi Bedoui

In this article, we propose to design a new modular architecture for a self-organizing map (SOM) neural network. The proposed approach, called systolic-SOM (SSOM), is based on the use of a generic model inspired by a systolic movement. This model is formed by two levels of nested parallelism of neurons and connections. Thus, this solution provides a distributed set of independent computations between the processing units called neuroprocessors (NPs) which define the SSOM architecture. The NP modules have an innovative architecture compared to those proposed in the literature. Indeed, each NP performs three different tasks without requiring additional external modules. To validate our approach, we evaluate the performance of several SOM network architectures after their integration on an FPGA support. This architecture has achieved a performance almost twice as fast as that obtained in the recent literature.


Sign in / Sign up

Export Citation Format

Share Document