Real-Time Wellbore Placement Improvement with High-Fidelity Trajectory Estimation and Dual-Sensor MWD Packages

2021 ◽  
Author(s):  
David Gutierrez ◽  
Nate Anderson ◽  
Chad Hanak ◽  
Tim Paton ◽  
Julia Vallejos ◽  
...  

Abstract High-fidelity trajectory estimation combined with dual-probe Measurement-While-Drilling (MWD) directional instrumentation provides a solution to minimum curvature’s known inefficiencies in modeling the true wellbore position and definition (Stockhausen & Lesso, 2003). While it may not be cost efficient to increase survey frequency from the industry standard of 30ft-200ft, it is possible using the techniques defined in this research to maintain current survey intervals and increase wellbore placement accuracy while reducing positional uncertainty by up to 45% over the most advanced commercially available magnetic survey correction algorithms. Taking advantage of modern MWD tool platforms enables the installation of an additional (30-inch) survey measurement probe in the existing tool string with a fixed and known offset to the primary survey probe. Directional surveys from both survey probes are telemetered to surface at traditional course length survey intervals in real-time. The two surveys along with the known steering and non-steering intervals are processed through a high-fidelity trajectory estimation algorithm to quantify the wellbore behavior between survey stations. The result is a highly accurate and dense survey listing with modeled trajectory waypoints between traditional surveys to reduce the course length between directional measurement datapoints and better capture the true well path. Through extensive lab modeling, it was determined that the use of the dual-probe MWD package in combination with the high-fidelity trajectory estimation algorithm could result in a reduction in the Ellipse of Uncertainty (EOU) by 20% in the horizontal (semi-major) plane and 45% in the vertical (semi-minor) plane when compared to Multi-Station Analysis (MSA) and BHA Sag survey correction techniques. In addition to proof-of-concept modeling, the system has been deployed and used in real-time application on three separate pads, totaling nine wells. The results were able to validate and exceed baseline goals by exhibiting, on average, a reduction of the EOU by 21% in the horizontal plane and 58% in the vertical plane. Further, True Vertical Depth (TVD) error at well Total Depth (TD) in excess of 10ft was observed on three out of nine wells (33%) in this limited real-time application study. This difference was relative to separate, concurrent processing of the surveys via Multi-Station Analysis (MSA) and BHA sag corrections. This level of increased TVD accuracy is significant in many applications, depending on zone thickness and difficulty of geological interpretation. Increased accuracy and reduced uncertainty result from a better understanding of the true well path between traditional course length surveys. The trajectory estimation algorithm quantifies the rotational build/drop and walk rates in real-time and is reinforced by the dual-probe directional survey measurements. These tendencies can be used to better project forward to the bit as the well is drilled. Improved projection to the bit allows for enhanced recognition of deviation from the well plan and better-informed steering decisions.

2019 ◽  
Vol 20 (5) ◽  
pp. 999-1014 ◽  
Author(s):  
Stephen B. Cocks ◽  
Lin Tang ◽  
Pengfei Zhang ◽  
Alexander Ryzhkov ◽  
Brian Kaney ◽  
...  

Abstract The quantitative precipitation estimate (QPE) algorithm developed and described in Part I was validated using data collected from 33 Weather Surveillance Radar 1988-Doppler (WSR-88D) radars on 37 calendar days east of the Rocky Mountains. A key physical parameter to the algorithm is the parameter alpha α, defined as the ratio of specific attenuation A to specific differential phase KDP. Examination of a significant sample of tropical and continental precipitation events indicated that α was sensitive to changes in drop size distribution and exhibited lower (higher) values when there were lower (higher) concentrations of larger (smaller) rain drops. As part of the performance assessment, the prototype algorithm generated QPEs utilizing a real-time estimated and a fixed α were created and evaluated. The results clearly indicated ~26% lower errors and a 26% better bias ratio with the QPE utilizing a real-time estimated α as opposed to using a fixed value as was done in previous studies. Comparisons between the QPE utilizing a real-time estimated α and the operational dual-polarization (dual-pol) QPE used on the WSR-88D radar network showed the former exhibited ~22% lower errors, 7% less bias, and 5% higher correlation coefficient when compared to quality controlled gauge totals. The new QPE also provided much better estimates for moderate to heavy precipitation events and performed better in regions of partial beam blockage than the operational dual-pol QPE.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5209 ◽  
Author(s):  
Andrea Gonzalez-Rodriguez ◽  
Jose L. Ramon ◽  
Vicente Morell ◽  
Gabriel J. Garcia ◽  
Jorge Pomares ◽  
...  

The main goal of this study is to evaluate how to optimally select the best vibrotactile pattern to be used in a closed loop control of upper limb myoelectric prostheses as a feedback of the exerted force. To that end, we assessed both the selection of actuation patterns and the effects of the selection of frequency and amplitude parameters to discriminate between different feedback levels. A single vibrotactile actuator has been used to deliver the vibrations to subjects participating in the experiments. The results show no difference between pattern shapes in terms of feedback perception. Similarly, changes in amplitude level do not reflect significant improvement compared to changes in frequency. However, decreasing the number of feedback levels increases the accuracy of feedback perception and subject-specific variations are high for particular participants, showing that a fine-tuning of the parameters is necessary in a real-time application to upper limb prosthetics. In future works, the effects of training, location, and number of actuators will be assessed. This optimized selection will be tested in a real-time proportional myocontrol of a prosthetic hand.


2021 ◽  
Vol 157 ◽  
pp. 107720
Author(s):  
Christina Insam ◽  
Arian Kist ◽  
Henri Schwalm ◽  
Daniel J. Rixen
Keyword(s):  

2021 ◽  
Vol 714 (4) ◽  
pp. 042046
Author(s):  
Jiangping Nan ◽  
Yajuan Jia ◽  
Xuezhen Dai ◽  
Yinglu Liu ◽  
Xiaowen Ren ◽  
...  

Author(s):  
M. M. Astrahan ◽  
B. Housman ◽  
J. F. Jacobs ◽  
R. P. Mayer ◽  
W. H. Thomas

Author(s):  
Tingting Yin ◽  
Zhong Yang ◽  
Youlong Wu ◽  
Fangxiu Jia

The high-precision roll attitude estimation of the decoupled canards relative to the projectile body based on the bipolar hall-effect sensors is proposed. Firstly, the basis engineering positioning method based on the edge detection is introduced. Secondly, the simplified dynamic relative roll model is established where the feature parameters are identified by fuzzy algorithms, while the high-precision real-time relative roll attitude estimation algorithm is proposed. Finally, the trajectory simulations and grounded experiments have been conducted to evaluate the advantages of the proposed method. The positioning error is compared with the engineering solution method, and it is proved that the proposed estimation method has the advantages of the high accuracy and good real-time performance.


Sign in / Sign up

Export Citation Format

Share Document