Core-Derived Velocity Systematics, Mississippian Meramec Formation, Oklahoma

SPE Journal ◽  
2021 ◽  
pp. 1-10
Author(s):  
Jing Fu ◽  
Carl Sondergeld ◽  
Chandra Rai

Summary Elastic wave velocities are commonly used to predict porosity, mineralogy, and lithology from formation properties. When only P-wave sonics are available in historical wells, systematics for predicting shear velocities are useful for developing elastic models. Although much research has been done on conventional reservoir velocity systematics, the equivalency for unconventional formations is still a work in progress. There has also been a limited number of research studies with laboratory measures published. Using laboratory pulse transmission ultrasonic data, we created a Vp-Vs systematic for the Meramec Formation in this study. The effects of porosity and mineralogy on velocities are explored, as well as a comparison of Meramec velocity systematics with well-established literature systematics. Vp and Vs measurements were taken on 385 dodecane-saturated core samples from seven Meramec wells (106 vertical and 279 horizontal plugs). S-wave and P-wave anisotropy in Meramec Formation samples used in this study are typically less than 10%. Each sample was also tested for porosity and mineralogy. We find that velocities are more sensitive to porosity than mineralogy by a factor of 10. Below are our equations for predicting Vp and Vs (in km/s), when only clay content and porosity are known. In these equations, φ is the volume fraction pores, and Clays is the weight fraction of clay. These equations are for those samples in which there is low P-wave and S-wave anisotropies:(1)Vp=6.4−1.2*Clays−15.4*φ(R2=0.5),(2)Vs=3.6−0.5*Clays−5.2*φ(R2=0.4). We suggest two methods for calculating Vs from Vp: Ignoring anisotropy, we combined both Vp and Vs measurements from all vertical plugs and low anisotropy horizontal plugs to create a single shear wave predictor; and considering anisotropy, Vp measurements from horizontal plugs were corrected using Thomsen’s compressional wave anisotropy parameter, after which a shear velocity predictor was generated. The shear wave predictors for dodecane-saturated measurements are as follows (all velocities are km/s):(3)Method 1: Vs= 0.90 + 0.42*Vp (R2=0.7),(4)Method 2: Vs= 0.80 + 0.45*Vp (R2=0.6). The residual and estimated error in Eq. 3 is slightly less than in Eq. 4. Even though there is a significant variance in measurement frequency, the Meramec velocity systematic shows good agreement with dipole wireline measurements using the first equation. The Meramec velocity systematics differ significantly from previously published systematics, such as the trend line by Greenberg and Castagna (1992) and the shale trend line by Vernik et al. (2018). Using the correlations by Greenberg and Castagna (1992) for limestone or dolomite, the shear velocities of the samples in this study cannot be predicted. These data have yielded shear wave systematics, which can be used in wireline and seismic investigations. The results suggest that the method of ignoring anisotropy yields a better Vs estimate than the one that takes anisotropy into account. Using well-established shear wave velocity systematics from the published literature can result in an estimated inaccuracy of greater than 16%. It is important to calibrate velocity systematics to the target formation.

1980 ◽  
Vol 20 (05) ◽  
pp. 317-326 ◽  
Author(s):  
E.A. Koerperich

Abstract Acoustic waveforms from long- and short-spacedsonic logs were investigated to determine ifshort-spaced tools give accurate measurements of shear wave velocity. Compressional wave interference canaffect shear velocities from both tools adversely.However, the short-spaced tool was useful over awider range of conditions. Introduction The areas where shear velocity data can be appliedtheoretically or empirically are diverse. Most of theseinvolve use of the dynamic elastic rock constants, which can be computed from shear (S) velocity[along with compressional (P) velocity and bulkdensity, which are obtained readily from existingwireline logging devices]. Some of these applicationareas are (1) seismic amplitude calibration andinterpretation, (2) sand control,(3) formationfracturing, reservoir material balance and subsidencestudies(through relationships between rock andpore-volume changes with stress),(4) lithologyand porosity, 14 and (5) geopressure prediction. While rich in possible application areas, shearvelocity is difficult to measure automatically withconventional acoustic devices and detection schemes.Except in limited lithology-logging conditions, manual examination of waveforms commonly isrequired to extract shear velocity. Even then there has been considerable uncertainty in shear arrivals onshort-spaced tools due to P-wave interference. Insofter rocks, conventional tools simply do nottransmit distinct shear arrivals. Current axial transmitter-receiver (T-R) toolsare designed primarily for detection of P waves.Downhole amplifiers adjusted to accentuate the firstP-wave arrival normally saturate through the shearand late P regions of the waveform. When downholegain is reduced to eliminate amplifier saturation, initial shear arrivals generally are superimposed onlate P arrivals. This interference makes automaticdetection difficult and leads to a concern about theconsistency and dependability of this arrival fordetermining shear velocity. The interference effect iscompounded in that the initial shear energycommonly is not extremely high relative to P-waveenergy. Rather shear amplitudes are generally lowinitially and increase with succeeding arrivals. Theshear breaking point, therefore, almost always isobscured by P-wave interference. In somelithologies, such as low-porosity carbonates, an earlyshear arrival (probably the second or third shearhalf-cycle)sometimes has relatively high amplitudecompared with superimposed P arrivals. This"high-amplitude" event is commonly used to determineshear velocity. SPEJ P. 317^


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Paritosh Singh ◽  
Thomas Davis

The Upper Morrow sandstones in the western Anadarko Basin have been prolific oil producers for more than five decades. Detection of Morrow sandstones is a major problem in the exploration of new fields and the characterization of existing fields because they are often very thin and laterally discontinuous. Until recently compressional wave data have been the primary resource for mapping the lateral extent of Morrow sandstones. The success with compressional wave datasets is limited because the acoustic impedance contrast between the reservoir sandstones and the encasing shales is small. Here, we have performed full waveform modeling study to understand the Morrow sandstone signatures on compressional wave (P-wave), converted-wave (PS-wave) and pure shear wave (S-wave) gathers. The contrast in rigidity between the Morrow sandstone and surrounding shale causes a strong seismic expression on the S-wave data. Morrow sandstone shows a distinct high amplitude event in pure S-wave modeled gathers as compared to the weaker P- and PS-wave events. Modeling also helps in understanding the adverse effect of interbed multiples (due to shallow high velocity anhydrite layers) and side lobe interference effects at the Morrow level. Modeling tied with the field data demonstrates that S-waves are more robust than P-waves in detecting the Morrow sandstone reservoirs.


Geophysics ◽  
2005 ◽  
Vol 70 (4) ◽  
pp. R15-R23 ◽  
Author(s):  
Robbert van Vossen ◽  
Andrew Curtis ◽  
Jeannot Trampert

Detailed knowledge of near-surface P- and S-wave velocities is important for processing and interpreting multicomponent land seismic data because (1) the entire wavefield passes through and is influenced by the near-surface soil conditions, (2) both source repeatability and receiver coupling also depend on these conditions, and (3) near-surface P- and S-wave velocities are required for wavefield decomposition and demultiple methods. However, it is often difficult to measure these velocities with conventional techniques because sensitivity to shallow-wave velocities is low and because of the presence of sharp velocity contrasts or gradients close to the earth's free surface. We demonstrate that these near-surface P- and S-wave velocities can be obtained using a propagator inversion. This approach requires data recorded by at least one multicomponent geophone at the surface and an additional multicomponent geophone at depth. The propagator between them then contains all information on the medium parameters governing wave propagation between the geophones at the surface and at depth. Hence, inverting the propagator gives local estimates for these parameters. This technique has been applied to data acquired in Zeist, the Netherlands. The near-surface sediments at this site are unconsolidated sands with a thin vegetation soil on top, and the sediments considered are located above the groundwater table. A buried geophone was positioned 1.05 m beneath receivers on the surface. Propagator inversion yielded low near-surface velocities, namely, 270 ± 15 m/s for the compressional-wave velocity, which is well below the sound velocity in air, and 150 ± 9 m/s for the shear velocity. Existing methods designed for imaging deeper structures cannot resolve these shallow material properties. Furthermore, velocities usually increase rapidly with depth close to the earth's surface because of increasing confining pressure. We suspect that for this reason, subsonic near-surface P-wave velocities are not commonly observed.


1990 ◽  
Vol 80 (2) ◽  
pp. 430-449 ◽  
Author(s):  
William Menke ◽  
Arthur L. Lerner-Lam ◽  
Bruce Dubendorff ◽  
Javier Pacheco

Abstract Except for its very onset, the P wave of earthquakes and chemical explosions observed at two narrow-aperture arrays on hard-rock sites in the Adirondack Mountains have a nearly random polarization. The amount of energy on the vertical, radial, and transverse components is about equal over the frequency range 5 to 30 Hz, for the entire seismogram. The spatial coherence of the seismograms is approximately exp(−cfΔx), where c is in the range 0.4 to 0.7 km−1Hz−1, f is frequency and Δx is the distance between array elements. Vertical, radial, and transverse components were quite coherent over the aperture of the array, indicating that the transverse motion of the compressional wave is a property of relatively large (106 m3) volumes of rock, and not just an anomaly caused by a malfunctioning instrument, poor instrument-rock coupling, or out-crop-scale effects. The spatial coherence is approximately independent of component, epicentral azimuth and range, and whether P- or S-wave coda is being considered, at least for propagation distances between 5 and 170 km. These results imply a strongly and three-dimensionally heterogeneous crust, with near-receiver scattering in the uppermost crust controlling the coherence properties of the waves.


2022 ◽  
Vol 41 (1) ◽  
pp. 47-53
Author(s):  
Zhiwen Deng ◽  
Rui Zhang ◽  
Liang Gou ◽  
Shaohua Zhang ◽  
Yuanyuan Yue ◽  
...  

The formation containing shallow gas clouds poses a major challenge for conventional P-wave seismic surveys in the Sanhu area, Qaidam Basin, west China, as it dramatically attenuates seismic P-waves, resulting in high uncertainty in the subsurface structure and complexity in reservoir characterization. To address this issue, we proposed a workflow of direct shear-wave seismic (S-S) surveys. This is because the shear wave is not significantly affected by the pore fluid. Our workflow includes acquisition, processing, and interpretation in calibration with conventional P-wave seismic data to obtain improved subsurface structure images and reservoir characterization. To procure a good S-wave seismic image, several key techniques were applied: (1) a newly developed S-wave vibrator, one of the most powerful such vibrators in the world, was used to send a strong S-wave into the subsurface; (2) the acquired 9C S-S data sets initially were rotated into SH-SH and SV-SV components and subsequently were rotated into fast and slow S-wave components; and (3) a surface-wave inversion technique was applied to obtain the near-surface shear-wave velocity, used for static correction. As expected, the S-wave data were not affected by the gas clouds. This allowed us to map the subsurface structures with stronger confidence than with the P-wave data. Such S-wave data materialize into similar frequency spectra as P-wave data with a better signal-to-noise ratio. Seismic attributes were also applied to the S-wave data sets. This resulted in clearly visible geologic features that were invisible in the P-wave data.


Geophysics ◽  
2021 ◽  
pp. 1-47
Author(s):  
Song Xu ◽  
Xiao-Ming Tang ◽  
Carlos Torres-Verdín ◽  
Zhen Li ◽  
Yuanda Su

Aligned fractures/cracks in rocks are a primary source of elastic anisotropy. In an azimuthally anisotropic formation surrounding a borehole, shear waves split into fast and slow waves that propagate along the borehole and are recorded by a borehole logging tool. However, when the formation has conjugate fractures with orthogonal strike directions, the azimuthal anisotropy vanishes. Hence, azimuthal anisotropy measurements may not be adequate to detect orthogonal fracture sets. We develop a method for obtaining azimuthal and radial shear-wave anisotropy parameters simultaneously from four-component array waveforms. The method utilizes a velocity tomogram around the borehole. Azimuthal and radial anisotropy were determined by integrating shear velocity radiation profile along the radial direction at different azimuthal angles. Results indicate that this approach is reliable for estimating anisotropy properties in aligned crack systems. The advantage of this interpretation method is shown in multiple conjugate crack systems. Field data processing examples are used to verify the application of the proposed technique. Comparison of results against those obtained with a conventional procedure shows that the new method can not only provide estimates of azimuthal anisotropy, but also of the radial anisotropy parameter, which is important in fracture network evaluation.


1988 ◽  
Vol 11 ◽  
pp. 198 ◽  
Author(s):  
S. Anandakrishnan

Detailed seismic short-refraction profiling was conducted on Ice Stream Β (UpB) during the 1983–84 austral summer. A new high-resolution data logger, developed at the University of Wisconsin, recorded both compressional- and shear-wave arrivals. We report here on P-wave and S-wave profiles recorded along a line parallel to the axis of the ice stream. Source-receiver separations up to 720 m yielded seismic velocity-depth curves to below the firn-ice transition zone (slightly greater than 30 m at UpB). For the compressional-wave profile, geophones were separated by 2.5 m, which yielded a velocity-depth curve with a granularity of ∼1 m. The corresponding density-depth curve agrees well with direct density measurements obtained from a core extracted nearby (Alley and Bentley 1988, this volume). Discontinuities in the velocity gradient do not appear at the “critical densities” as they did at Byrd Station, Antarctica, and elsewhere (Kohnen and Bentley 1973 , Robertson and Bentley 1975). Two shear-wave profiles were recorded, both with geophone spacings of 5 m, one with longitudinal polarization (SV) and the other with transverse polarization (SH). There is a marked difference in velocity between the SH and SV waves, particularly in the shallow firn. We suggest that a strong vertical shape-and-bonding fabric in the shallow firn, as observed in cores collected at UpB, would account for this disparity.


Geophysics ◽  
1995 ◽  
Vol 60 (6) ◽  
pp. 1627-1633 ◽  
Author(s):  
Bart W. Tichelaar ◽  
Klaas W. van Luik

Borehole sonic waveforms are commonly acquired to produce logs of subsurface compressional and shear wave velocities. To this purpose, modern borehole sonic tools are usually equipped with various types of acoustic sources, i.e., monopole and dipole sources. While the dipole source has been specifically developed for measuring shear wave velocities, we found that the dipole source has an advantage over the monopole source when determining compressional wave velocities in a very slow formation consisting of unconsolidated sands with a porosity of about 35% and a shear wave velocity of about 465 m/s. In this formation, the recorded compressional refracted waves suffer from interference with another wavefield component identified as a leaky P‐wave, which hampers the determination of compressional wave velocities in the sands. For the dipole source, separation of the compressional refracted wave from the recorded waveforms is accomplished through bandpass filtering since the wavefield components appear as two distinctly separate contributions to the frequency spectrum: a compressional refracted wave centered at a frequency of 6.5 kHz and a leaky P‐wave centered at 1.3 kHz. For the monopole source, the frequency spectra of the various waveform components have considerable overlap. It is therefore not obvious what passband to choose to separate the compressional refracted wave from the monopole waveforms. The compressional wave velocity obtained for the sands from the dipole compressional refracted wave is about 2150 m/s. Phase velocities obtained for the dispersive leaky P‐wave excited by the dipole source range from 1800 m/s at 1.0 kHz to 1630 m/s at 1.6 kHz. It appears that the dipole source has an advantage over the monopole source for the data recorded in this very slow formation when separating the compressional refracted wave from the recorded waveforms to determine formation compressional wave velocities.


1967 ◽  
Vol 7 (02) ◽  
pp. 136-148 ◽  
Author(s):  
A.R. Gregory

Abstract A shear wave velocity laboratory apparatus and techniques for testing rock samples under simulated subsurface conditions have been developed. In the apparatus, two electromechanical transducers operating in the frequency range 0.5 to 5.0 megahertz (MHz: megacycles per second) are mounted in contact with each end of the sample. Liquid-solid interfaces of Drakeol-aluminum are used as mode converters. In the generator transducer, there is total mode conversion from P-wave energy to plain S-wave energy, S-wave energy is converted back to P-wave energy in the motor transducer. Similar transducers without mode converters are used to measure P-wave velocities. The apparatus is designed for testing rock samples under axial or uniform loading in the pressure range 0 to 12,000 psi. The transducers have certain advantages over those used by King,1 and the measurement techniques are influenced less by subjective elements than other methods previously reported. An electronic counter-timer having a resolution of 10 nanoseconds measures the transit time of ultrasonic pulses through the sample; elastic wave velocities of most homogeneous materials can be measured with errors of less than 1 percent. S- and P-wave velocity measurements on Bandera sandstone and Solenhofen limestone are reported for the axial pressure range 0 to 6,000 psi and for the uniform pressure range 0 to 10,000 psi. The influence of liquid pore saturants on P- and S-wave velocity is investigated and found to be in broad agreement with Biot's theory. In specific areas, the measurements do not conform to theory. Velocities of samples measured under axial and uniform loading are compared and, in general, velocities measured under uniform stress are higher than those measured under axial stress. Liquid pore fluids cause increases in Poisson's ratio and the bulk modulus but reduce the rigidity modulus, Young's modulus and the bulk compressibility. INTRODUCTION Ultrasonic pulse methods for measuring the shear wave velocity of rock samples in the laboratory have been gradually improved during the last few years. Early experimental pulse techniques reported by Hughes et al.2, and by Gregory3 were beset by uncertainties in determining the first arrival of the shear wave (S-wave) energy. Much of this ambiguity was caused by the multiple modes propagated by piezoelectric crystals and by boundary conversions in the rock specimens. Shear wave velocity data obtained from the critical angle method, described by Schneider and Burton4 and used later by King and Fatt5 and by Gregory,3,6 are of limited accuracy, and interpreting results is too complicated for routine laboratory work. The mode conversion method described by Jamieson and Hoskins7 was recently used by King1 for measuring the S-wave velocities of dry and liquid-saturated rock samples. Glass-air interfaces acted as mode converters in the apparatus, and much of the compressional (P-wave) energy apparently was eliminated from the desired pure shear mode. A more detailed discussion of the current status of laboratory pulse methods applied to geological specimens is given in a review by Simmons.8


Sign in / Sign up

Export Citation Format

Share Document