The Implementation of Laser Shaft Alignment System on Rotating Machines in the Bulla Field, Platform 6

2021 ◽  
Author(s):  
Rovshan Bayramov ◽  
Emil Asgarov

Abstract Shaft misalignment is a common fault in rotating machines in the industry. Inadequate coupling alignment of rotating shafts often results in serious vibration problems and premature machine component failure. This article introduces the concept of using a laser shaft alignment system to improve equipment reliability, maintenance efficiency, and reduce rotating component wear. This paper explores the concept of implementation of laser shaft alignment system on rotating machines in the Bulla field, Platform 6. For this purpose, an appropriate tool has been selected for further implementation. As compared to a traditional mechanical method, the proposed electronic approach has more accurate results and optimize the performance gained via the previous techniques. Additionally, the application of the proposed system is user friendly and faster compared to the previous method. The measurement procedure is issued as per system manufacturer recommendation, and manufacturer video training will be submitted to appropriate maintenance staff. The novelty of the approach is to increase the reliability of rotating machines on Platform 6 in the Bulla field and develop Company maintenance processes by implementing a new laser measurement system.

2020 ◽  
Vol 14 (1) ◽  
pp. 71-76
Author(s):  
Dwijaya Febriansyah ◽  
Barman Tambunan ◽  
Rudias Harmadi ◽  
Budi Noviyantoro Fadjrin

Sebagian besar penyebab kegagalan pada mesin-mesin rotasi termasuk turbin uap adalah poros yang berputar dalam kondisi misalignment. Pada turbin uap, panas yang merambat pada casing dapat merubah dimensi turbin uap karena adanya pemuaian (thermal growth) sehingga mempengaruhi kelurusan poros saat berputar. Nilai thermal growth ini perlu diketahui sebagai salah satu spesifikasi dalam penyetelan poros sebelum turbin beroperasi. Dalam studi ini,  thermal growth pada turbin uap 3 MW diinvestigasi dengan mengukur kelurusan poros dalam kondisi panas setelah berhenti berputar dan dingin menggunakan metode laser alignment. Hasil pengukuran menunjukkan bahwa thermal growth memberikan pengaruh terhadap kelurusan poros karena adanya selisih nilai kelurusan poros saat kondisi panas dan dingin yaitu 1.0 thous (gap) dan 2.8 thous (offset) pada bidang vertikal kemudian -1.0 thous (gap) dan -2.7 thous (offset) pada bidang horisontal.Kata kunci : Turbin uap, Thermal growth, Kelurusan porosMost of the causes of rotating machines failure including steam turbine is shaft misalignment. In the steam turbine, heat that travels to the casing can change steam turbine dimension due to thermal growth which affects the shaft alignment. Thermal growth values needs to be known as one of the specifications in shaft alignment setup. In this study, thermal growth on 3 MW steam turbine was investigated by measuring the shaft alignment in hot after shut down and cold condition using laser alignment method. Results show that thermal growth has an influence on shaft alignment due to difference of alignment values when hot and cold conditions, namely 1.0 thous (gap) and 2.8 thous (offset.) in vertical plane then -1.0 thous (gap) and -2.7 thous (offset.) in horizontal plane.Key Words : Steam Turbine, Thermal growth, Shaft alignment 


Author(s):  
Samuel A. Howard

As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared to other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.


Author(s):  
Samuel A. Howard

As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared with other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.


2006 ◽  
Vol 7 (10) ◽  
pp. 1772-1776 ◽  
Author(s):  
Guo-hua Jiao ◽  
Yu-lin Li ◽  
Dong-bo Zhang ◽  
Tong-hai Li ◽  
Bao-wen Hu

2021 ◽  
Vol 321 ◽  
pp. 01012
Author(s):  
Abdelhak Megdoud ◽  
Belkacem Manser ◽  
Idir Belaidi ◽  
Farid Bakir ◽  
Sofiane Khelladi

In recent years, machine component design has been a major concern for researchers. Emphasis has been placed especially on the analysis of bearing systems in order to avoid detrimental contact. The shaft misalignment is one of the most problems that affects directly the operating conditions of these components. In this context, the present study proposes a reduced-order method "Proper Generalized Decomposition" (PGD) using the separation technique through the alternating direction strategy to solve the modified Reynolds equation, taking into account the presence of misalignment in the shafting system. The solution shows the representation of two types of misalignment geometry, especially axial and twisting. A comparison of the results between the proposed approach and the classical method, through several benchmark examples, made it possible to highlight that the new scheme is more efficient, converges quickly and provides accurate solutions, with a very low CPU time expenditure.


2006 ◽  
Vol 128 (4) ◽  
pp. 1019-1024 ◽  
Author(s):  
Olufemi A. Omitaomu ◽  
Myong K. Jeong ◽  
Adedeji B. Badiru ◽  
J. Wesley Hines

Shaft alignment prediction is essential for the development of effective coupling and rotating equipment maintenance systems. In this paper, we present a modified support vector regression (SVR) approach for shaft alignment predictions based on fast Fourier transform generated spectra data. The modified SVR approach uses data-dependent parameters in order to reduce computation time and achieve better predictions. The spectra data used is characterized by a large number of descriptors and very few data points. The strengths of SVR for shaft misalignment prediction include its ability to represent data in high-dimensional space through kernel functions. We reduce the dimension of the data using a multivariate AIC criterion in order to guarantee that the selected spectra are response dependent. We compare the performance of SVR with two of the most popular techniques used in condition monitoring, partial least squares, and principal components regression. Our results show that we can improve the performance of shaft misalignment prediction using SVR and the approach compares very favorably with partial least squares and principal components regression approaches. Also, we present a quantitative measure, shaft misalignment monitoring index, which can be used to facilitate easy identification of the alignment condition and as input to maintenance systems design.


Author(s):  
F. Hosokawa ◽  
Y. Kondo ◽  
T. Honda ◽  
Y. Ishida ◽  
M. Kersker

High-resolution transmission electron microscopy must attain utmost accuracy in the alignment of incident beam direction and in astigmatism correction, and that, in the shortest possible time. As a method to eliminate this troublesome work, an automatic alignment system using the Slow-Scan CCD camera has been introduced recently. In this method, diffractograms of amorphous images are calculated and analyzed to detect misalignment and astigmatism automatically. In the present study, we also examined diffractogram analysis using a personal computer and digitized TV images, and found that TV images provided enough quality for the on-line alignment procedure of high-resolution work in TEM. Fig. 1 shows a block diagram of our system. The averaged image is digitized by a TV board and is transported to a computer memory, then a diffractogram is calculated using an FFT board, and the feedback parameters which are determined by diffractogram analysis are sent to the microscope(JEM- 2010) through the RS232C interface. The on-line correction system has the following three modes.


Sign in / Sign up

Export Citation Format

Share Document