Imperatives for Implementing Gas-Lifting for Fields with Sand Control: OT Field Experience

2021 ◽  
Author(s):  
Kingsley Iheajemu ◽  
Erasmus Nnanna ◽  
Somtochukwu Odumodu

Abstract Unconsolidated sandstone formations are normally completed with one form of sand control or the other. The aim is to manage sand production as low as reasonably practicable and protect well and surface equipment from possible loss of containment. There are about 8 broad types of sand control namely; internal gravel pack, external gravel pack, chemical sand consolidation (SCON), open-hole expandable sand screen, cased-hole expandable sand screen, stand-alone screen, pre-packed screen and frac & pack. Gas-lifting targets to increase pressure drawdown required for wells to produce by injecting gas at a pre-determined depth using gas-lift valves installed in the tubing. Whereas gas-lift design targets to optimize the gas-lift injection to ensure stable production, the associated drawdown may challenge the operating envelope of the sand control mechanism in place. The OT field has been in production for about 50 years and has been on gas-lift for about 20 years. There have also been occasional sand production problems in the field; some of which occur in gas-lifted wells. This paper will highlight the outcome of a study that investigated the performance of various sand control mechanisms under gas-lift production and present observed trends to serve as guide in maximizing the performance of such gas-lifted wells with sand control mechanism.

2021 ◽  
Author(s):  
Rishabh Bharadwaj ◽  
Manish Kumar ◽  
Shashwat Harsh ◽  
Deepak Mishra

Abstract Sand control poses huge financial loses during production operations particularly in mature fields. It hinders economic oil production rates as well as damages downhole and surface equipment due to its abrasive action. Excessive sand production rates can plug the wellhead, flow lines, and separators which can result in detrimental well control situations. This paper will provide a comparative study on various sand control mechanisms by reviewing the latest advancements in sand management techniques. This study evaluates the performance of through-tubing sand screens, internal gravel pack, cased hole expandable sand screen, modular gravel pack system, openhole standalone screen, multi-zone single trip gravel pack, slim gravel pack, and chemical sand consolidation mechanisms. Various field examples from Niger-Delta, Mahakam oil and gas block, and offshore Malaysia are examined to gain an insight about the application of aforementioned sand control methods for different type of reservoirs. This study enables the operator to tackle the sand production problem according to the well construction changes during the life cycle of a well. The internal gravel pack completion system delivers a prolonged plateau production regime in shallow depths. In high drawdown conditions, chemical sand consolidation completion incurs early water breakthrough and elevated sand production. Chemical sand consolidation technique yields better results in deeper formations and its placement can be improvised by implementing coiled tubing and diversion techniques for multi-stage treatments. Depending on the well inclination, gas-water contact, producing zone type and thickness, well age, and economy, the completion types out of modular gravel pack, openhole standalone screen, slim gravel pack, and through tubing sand screen is recommended accordingly. Acquiring offset data, well log analysis, particle size distribution and performing pressure tests will improve the data quality of the obtained reservoir properties. This will further help in the selection of the most suitable sand control method for the target reservoir.


2013 ◽  
Author(s):  
Yoliandri Susilo ◽  
Kevin Whaley ◽  
Santiago Loboguerrero ◽  
Phillip Jackson ◽  
Natig Kerimov ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Thivyashini Thamilyanan ◽  
Hasmizah Bakar ◽  
Irzee Zawawi ◽  
Siti Aishah Mohd Hatta

Abstract During the low oil price era, the ability to deliver a small business investment yet high monetary gains was the epitome of success. A marginal field with its recent success of appraisal drilling which tested 3000bopd will add monetary value if it is commercialized as early as possible. However, given its marginal Stock Tank Oil Initially in Place (STOIIP), the plan to develop this field become a real challenge to the team to find a fit-for-purpose investment to maximize the project value. Luxuries such as sand control, artificial lift and frequent well intervention need to be considered for the most cost-effective measures throughout the life of field ‘Xion’. During field development study, several development strategies were proposed to overcome the given challenges such as uncertainty of reservoir connectivity, no gas lift supply, limited footprint to cater surface equipment and potential sand production. Oriented perforation, Insitu Gas Lift (IGL), Pressure Downhole Gauge (PDG), Critical Drawdown Pressure (CDP) monitoring is among the approaches used to manage the field challenges will be discussed in this paper. Since there are only two wells required to develop this field, a minimum intervention well is the best option to improve the project economics. This paper will discuss the method chosen to optimize the well and completion strategy cost so that it can overcome the challenges mentioned above in the most cost-effective approach. Artificial lift will utilize the shallower gas reservoirs through IGL in comparison to conventional gas lift. Sand Production monitoring will utilize the PDG by monitoring the CDP. The perforation strategy will employ the oriented perforation to reduce the sand free drawdown limit compare to the full perforation strategy. The strategy to monitor production through PDG will also reduce the number of interventions to acquire pressure data in establishing reservoir connectivity for the second phase development through secondary recovery and reservoir pressure maintenance plan. This paper will also explain the innovative approaches adopted for this early monetization and fast track project which is only completed within 4 months. This paper will give merit to petroleum engineers and well completion engineers involved in the development of marginal fields.


2021 ◽  
Author(s):  
Kevin Whaley ◽  
Phillip J Jackson ◽  
Michael Wolanski ◽  
Tural Aliyev ◽  
Gumru Muradova ◽  
...  

Abstract Open Hole Gravel Pack (OHGP) completions have been the primary completion type for production wells in the Azeri-Chirag-Gunashli (ACG) field in Azerbaijan for 20 years. In recent years, it has been required to use well bore strengthening mud systems to allow drilling the more depleted parts of the field. This paper describes the major engineering effort that was undertaken to develop systems and techniques that would allow the successful installation of OHGP completions in this environment. OHGP completions have evolved over the last 3 decades, significantly increasing the window of suitable installation environments such that if a well could be drilled it could, in most cases, be completed as an OHGP if desired. Drilling fluids technology has also advanced to allow the drilling of highly depleted reservoirs with the development of well bore strengthening mud systems which use oversized solids in the mud system to prevent fracture propagation. This paper describes laboratory testing and development of well construction procedures to allow OHGPs to be successfully installed in wells drilled with well bore strengthening mud systems. Laboratory testing results showed that low levels of formation damage could be achieved in OHGPs using well bore strengthening mud systems that are comparable to those drilled with conventional mud systems. These drilling fluid formulations along with the rigorous mud conditioning and well clean-up practices that were developed were first implemented in mid-2019 and have now been used in 6 OHGP wells. All 6 wells showed that suitable levels of drilling mud cleanliness could be achieved with limited additional time added to the well construction process and operations and all of them have robust sand control reliability and technical limit skins. Historically it was thought that productive, reliable OHGP completions could not be delivered when using well bore strengthening mud systems due to the inability to effectively produce back filter cakes with large solids through the gravel pack and the ability to condition the mud system to allow sand screen deployment without plugging occurring. The engineering work and field results presented demonstrate that these hurdles can be overcome through appropriate fluid designs and well construction practices.


2021 ◽  
Author(s):  
Kayode Adegbulugbe ◽  
Akunna Ambakederemo ◽  
Chidi Elendu

Abstract An oil producing swamp field, BX, is located in the coastal region of the western Niger Delta with an average water depth of 15 – 20 ft. The wells in the most recent development drilling campaign were designed as horizontal wells with critical well objective of meeting the target oil production rates with sand control. In order to achieve these goals, the sand control methodology deployed is the Open Hole Gravel Pack (OHGP) pumped through Concentric Annular Pack Screen (CAPS) system. This completion methodology has similar comparisons to the AX field completions where 19 completions were successfully installed between 2016 and 2018. The lessons learnt from the AX campaign were implemented on the BX campaign and this contributed to the campaign's near-flawless completion execution evidenced by the world class operational excellence, very low Non-Productive Times (NPTs) best-in-class production performances with no sand production However, the following opportunities were identified and implemented during the BX campaign focused on either increasing operational efficiency or preventing post-completion productivity impairment:Elimination of slickline required for tubing test operations by incorporating a "RH" catcher sub into the completion designPerforming required analysis and implementing procedural change to ensure that the change from WBM to NAF does not compromise completion performance due to the presence of reactive shales intervals encountered in the lateralDeveloping and implementing an enhanced fluid loss protocol to address the fluid loss event in one of the BX well that prevented the execution of OHGP pumping operation in the well. The implementation of these opportunities contributed significantly to the continued consistent delivery of superior completions performance in the BX field. This paper aims to provide a background to these opportunities and highlights the steps and processes that were applied to ensure their flawless implementation.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Dany Shin Park

WHAT ARE ACCOUNTABILITY ANS SOCIAL CONTROL MECHANISMS? RESUMO: Para melhor compreendermos o que são accountability e mecanismos de controle social, uma breve contextualização sobre a Democracia Liberal Representativa e Governança se faz necessária, passando pelos pontos de vista da Ciência Política, da Ciência da Administração Pública e, por fim, do Direito, com ênfase em Direito Administrativo e Direito e Desenvolvimento. Na expressão mecanismos de controle social são considerados os instrumentos, as ferramentas e os recursos, que compõe a engrenagem relacional da accountability. São duas formas de olhar para o mesmo fenômeno, apenas que na primeira ele é visto como um regime relacional político-jurídico e, na segunda, como um conjunto de ferramentas e recursos, que, unidos por uma engenharia ou arquitetura, formam um regime institucionalizado de controle. Por tais razões, a afirmação de Mulgan (2000), de que a accountability é um meio de controle, entendido em seu sentido amplo. De outro lado, porém, accountability pode ser, por vezes, mais do que um mecanismo de controle, mas o próprio controle.PALAVRAS-CHAVE: Accountability. Controle social. Conceitos. Definições.ABSTRACT: In order to better understand what accountability and social control mechanisms are, a brief contextualization of Representative Liberal Democracy and Governance is necessary, from the points of view of Political Science, Public Administration Science and, finally, Law, with emphasis on Administrative Law and Law and Development. In the expression social control mechanisms are considered the instruments, tools and resources that make up the relational gear of accountability. They are two ways of looking at the same phenomenon, only that in the first it is seen as a political-legal relational regime and, in the second, as a set of tools and resources, which, united by engineering or architecture, form an institutionalized regime of control. For these reasons, Mulgan's (2000) statement that accountability is a means of control, understood in its broad sense, and, on the other hand, however, accountability may sometimes be more than a control mechanism, but control itself.KEYWORDS:  Accountability. Social control. Concepts Definitions.Data da submissão: 16/01/2020                  Data da aprovação: 14/04/2020 


2021 ◽  
Author(s):  
Putu Yudis ◽  
Doffie Cahyanto Santoso ◽  
Edo Tanujaya ◽  
Kristoforus Widyas Tokoh ◽  
Rahmat Sinaga ◽  
...  

Abstract In unconsolidated sand reservoirs, proper sand control completion methods are necessary to help prevent reservoir sand production. Failure due to sand production from surface equipment damage to downhole equipment failures which can ultimately result in loss of well integrity and worst-case catastrophic failure. Gravel Packing is currently the most widely used sand control method for controlling sand production in the oil and gas industry to deliver a proppant filter in the annular space between an unconsolidated formation and a centralized integrated screen in front of target zones. Additional mechanical skin and proper proppant packing downhole are the most critical objective when implementing gravel packs as part of a completion operation. This paper presents a case history of Well SX that was designed as single-trip multi-zone completion 7-inch casing, S-shape well type, having 86 deg inclination along 1300 meters, 4 to 5-meter perforation range interval and 54 deg inclination in front of the reservoir with total depth of 3800 mMD. The well consists of 4 zones of interest which had previously been treated with a two-trip gravel pack system. While Well NX was designed as single-trip multi-zone completion in 7-inch casing, J-shape well type, 8-meter perforation interval and 84 deg inclination in front of the reservoir with total depth of 3300 mMD. The well consists of two zones of interest which had previously been treated with a single-trip gravel pack system. Both wells are in the Sisi-Nubi field offshore Mahakam on East Kalimantan Province of Borneo, Indonesia. This paper discusses the downhole completion design and operation as well as the changes to the gravel pack carrier which overcame challenges such as high friction in the 7" lower completion and the potential for an improper annular gravel pack due to the lack of shunt tubes in a highly deviated wellbore. In vertical wellbores, obtaining a complete annular pack is relatively easy to accomplish but in highly deviated wellbores, the annular gravel pack is more difficult to achieve and can contribute additional skin. Tibbles at al (2007) noted that installing a conventional gravel pack could result in skin values of 40 to 50, mostly due to poor proppant packing in perforation tunnels. Therefore, operator required to find a reliable gravel pack carrier fluid optimization for typical highly deviated wells to overcome the potential sand production issues by applying a single-trip multi-zone sand control system across both zones (without shunt tubes) along with the utilization of a high-grade xanthan biopolymer gravel pack carrier fluid. Laboratory testing was conducted to ensure that the gravel pack fluid could transport the sand to the sand control completion, large enough to allow for a complete annular pack and still allow the excess slurry to be circulated out of the hole. Electronic gravel pack simulations were performed to ensure that rate/pressure/sand concentration would allow for a complete gravel pack. All four zones in Both of Well SX and NX were successfully gravel packed with a high rate, relatively high sand concentration slurry. The well has not exhibited any sand production issues to date. The current production from both wells is above expectation and are comingled from the two primary zones. Multiple factors were considered during the design and operation of the sand control treatment. Those factors will be described in this paper, starting with candidate selection, completion strategy, operational challenges and treatment execution along with production monitoring of the well.


2021 ◽  
Author(s):  
Alain Zaitoun ◽  
Arnaud Templier ◽  
Jerome Bouillot ◽  
Nazanin Salehi ◽  
Budi Rivai Wijaya ◽  
...  

Abstract Many fields in South East Asia are suffering from sand production problems due to sensitive sandstone formation. Sand production increases with time and increasing water production. The production of sand induces loss of production, due to sand accumulation in the wellbore, and heavy operational costs such as frequent sand cleaning jobs, pump replacements, replacement of surface and downhole equipment, etc. An original sand control technology consisting of polymers injection and already deployed in gas wells, has been successfully tested in an offshore oil well. The technology utilizes polymers having a natural tendency to coat the surface of the pores by a thin gel-like film of around 1 µm. Contrary to the use of resins which aim at creating a solid around the wellbore, the polymer system maintains the center of the pores fully open for fluid flow, thus preserving oil or gas permeability while often reducing water permeability (a property known as RPM for Relative Permeability Modification). The advantage of such system is that the product can be injected in the bullhead mode and often, a reduction of water production is observed along the drop in sand production. In gas wells, the treatment lasts around 4 years and can be renewed periodically. A lab work was undertaken to screen out a polymer product well suited to actual reservoir conditions. We conducted bulk tests to evaluate product interaction on reservoir sand samples, and corefloods to evaluate in-situ performances. Treatment volume and concentration were determined after lab test. One of "Oil Well" candidate is located in Arjuna Field, offshore Indonesia. Downhole conditions are: Temperature = 178°F, salinity = 18000 ppmTDS, permeability = 140-300mD, two perforated intervals with total thickness of 67ft (ft-MD) with 38 ft Average Netpay Thickness, production rate = 800 bfpd. The well is under gas lift and needed to be cleaned out every 3 months because of sand accumulation. Polymer treatment was performed in two stages (bottom, then upper interval). A total volume of 150 m3 of polymer solution was pumped. Immediately after treatment, sand cut dropped from 1% to almost 0%. This enabled increasing the drawdown from 32/64’’ choke to 40/64’’, keeping the production sand free and sustained with time. This field test confirms the feasibility of the original sand control polymer technology both in gas wells and in oil wells, which opens high possibilities in the future.


SPE Journal ◽  
2007 ◽  
Vol 12 (04) ◽  
pp. 468-474 ◽  
Author(s):  
Alireza Nouri ◽  
Hans H. Vaziri ◽  
Hadi Arbi Belhaj ◽  
M. Rafiqul Islam

Summary Installing sand control in long horizontal wells is difficult and particularly challenging in offshore fields. It is, therefore, imperative to make decisions with regard to the most optimum completion type objectively and based on reliable assessment of the sanding potential and its severity over the life of the well for the intended production target. This paper introduces a predictive tool that forecasts not only the initiation of sanding, but also its rate and severity in real time. A series of well-documented experiments on a large-size horizontal wellbore was simulated using a finite difference numerical model. The model accounts for the interaction between fluid flow and mechanical deformation of the medium, capturing various mechanisms of failure. The model allows capturing the episodic nature of sanding and the resulting changes in the geometry and formation consistency and behavior within the sand impacted regions. Sand detachment is simulated by removal of the elements that are deemed to have satisfied the criteria for sanding based on considerations of physics, material behaviour and laws of mechanics. The proposed numerical model is designed to account for many of the factors and mechanisms that are known to influence sanding in the field and as such can be used as a practical tool for predicting the frequency and severity of sand bursts and changes in operating conditions that can be considered for mitigating or managing such problems. The model shows reasonable agreement with the experimental results in terms of borehole deformation and sanding rates. The model correctly predicted initiation of shear failure from the sides of the borehole and its propagation to the boundaries of the sample. It was further seen that the propagation of the shear failed zone resulting from sand production agreed well with the numerical pattern of failure growth upon removal of elements satisfying the sanding criteria. The approach and concepts used are considered suitable for application to field problems involving horizontal wells. Introduction A significant proportion of the future oil and gas production is expected to come from sand-prone reservoirs, many of which are offshore. While these reservoirs are highly prolific they are complex to develop and manage. Typical cost of completing a major offshore well exceeds $100 million and these wells are expected to remain productive for 20 years and longer. The control of solids production in these high-rate wells over the life of the well is a challenge and requires a good understanding of the mechanical behavior of the formation under a variety of conditions. Various options are available, ranging from placing active sand control, such as gravel pack and frac pack, to natural completion, such as a cased and perforated hole. Objectivity is required in choosing the correct completion type, which must account for the production strategy and natural changes in the reservoir such as changes in the stress state, permeability, and multiphase flow, including water cut. Once the completion type is chosen, it must be operated optimally to maximize production while maintaining efficiency and longevity. For instance, in sand-control completions, operations must be tailored to mitigate generation and transport of fines that can cause plugging of the gravel pack and lead to screen erosion, whereas in natural completions, the emphasis would be in preventing formation sand production or keeping it under the tolerance that can be handled by the facility. Utilization of a reliable sand production prediction tool is essential in selecting the optimum completion technique and optimization of the operational conditions.


2021 ◽  
Author(s):  
Jin Li ◽  
Kunjian Wang ◽  
HaiNing Chen ◽  
Nigel Ruescher ◽  
Ruicheng Pang ◽  
...  

Abstract An offshore oil field in China was experiencing production challenges due to high water cut and low overall production. In order to boost production and address these challenges, adjacent reservoirs would need to be accessed and developed. Application of multilateral completion technology was considered the best method to achieve this, saving platform slots, increasing reservoir contact and keeling development cost low. An integrated solution was provided that allowed Technology Advancement Multilateral (TAML) Level#4 Multilateral Junctions with Gravel Packed Lateral sections, the first application of this type in China. The existing mainbore was temporarily isolated. Casing Exit was conducted at designated setting, and Hook Hanger TAML Level#4 Multilateral junction system was successfully installed and cemented. The horizontal Lateral bore was subsequently entered and gravel pack operations were successfully performed. Hydraulic integrity along well string is key to successful horizontal open hole gravel pack(OHGP). This TAML level#4 Multilateral completion design provided hydraulic integrity at junction during the whole OHGP process, the key to successful gravel pack. The mainbore can be restored as required. This paper concentrates on the technology utilized to successfully complete these wells. Multilateral and Gravel Pack equipment, challenges and solutions that were deployed to make this project a success are outlined. Three old wells in the field have applied this technology and have successfully improved production by 200m3/d. The wells give ability to selectively produce or comingle, allowing more flexibility with production. The introduction of Gravel Pack into the lateral affords greater sand control capabilities and ultimately assists overall production in well life. This application is now field proven with demonstrated production benefits and has potential for implementation in more developments in the region in future.


Sign in / Sign up

Export Citation Format

Share Document