Drilling in the Digital Age: Sensors in Bit and Underreamer Improves Future BHA Design Offshore Mexico

2021 ◽  
Author(s):  
Peter Batruny ◽  
Zuriel Aburto ◽  
Pete Slagel ◽  
M Razali Paimin ◽  
Mohamad Mahran ◽  
...  

Abstract Downhole vibration is the primary cause of low Rate of Penetration (ROP), and severe vibration causes Bottom Hole Assembly (BHA) tool failure; it is especially apparent during Hole Enlargement While Drilling (HEWD) due to multiple points of cutter contact with the formation at the bit and the underreamer. Electronic, high data rate sensors, embedded in the 17-1/2 in. bit and the 22 in. underreamer, generated detailed insights on the location, mechanism, and magnitude of downhole vibration. Time-based downhole vibration logs from the sensors were plotted alongside mudlogging data. Finite Element Analysis (FEA) models were run using actual drilling parameters to simulate downhole conditions and provide a baseline model for further optimization. Sensor data was isolated for each of the bit and underreamer to better understand the individual and combined vibration mechanisms during hole enlargement while drilling operations. The FEA model was then used to optimize BHA configuration and underreamer placement that result in the largest drilling parameter window for future BHAs. The data from sensors showed that whirl occurred when the bit entered sandstone bodies and the underreamer was still in shale. The data also showed that when the bit was in shale and the underreamer in sandstone, the underreamer experienced stick slip which induced stick slip at the bit. The BHA dynamics model run with actual drilling parameters showed a narrow drilling window with multiple critical vibration points at the same rotation speed (RPM). A new BHA was developed for the next well with a wider drilling window and less critical vibration points for the same RPM. The analysis identified key operational mitigations when stick slip or whirl are encountered. This work leveraged technology and insights generated from data to shorten the learning curve and improve operations after just one well. In a drilling age where operations are becoming increasingly complex, relying on surface data is no longer enough.

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Parimal Arjun Patil ◽  
Catalin Teodoriu

Drillstring vibration is one of the limiting factors maximizing drilling performance. Torsional vibrations/oscillations while drilling is one of the sever types of drillstring vibration which deteriorates the overall drilling performance, causing damaged bit, failure of bottom-hole assembly, overtorqued tool joints, torsional fatigue of drillstring, etc. It has been identified that the wellbore-drillstring interaction and well face-drill bit interaction are the sources of excitation of torsional oscillations. Predrilling analysis and real time analysis of drillstring dynamics is becoming a necessity for drilling oil/gas or geothermal wells in order to optimize surface drilling parameters and to reduce vibration related problems. It is very challenging to derive the drillstring model considering all modes of vibrations together due to the complexity of the phenomenon. This paper presents the mathematical model of a torsional drillstring based on nonlinear differential equations which are formulated considering drillpipes and bottom-hole assembly separately. The bit–rock interaction is represented by a nonlinear friction forces. Parametric study has been carried out analyzing the influence of drilling parameters such as surface rotations per minute (RPM) and weight-on-bit (WOB) on torsional oscillations. Influences of properties of drillstring like stiffness and inertia, which are most of the times either unknown or insufficiently studied during modeling, on torsional oscillation/stick-slip is also studied. The influences of different rock strength on rate of penetration (ROP) considering the drilling parameters have also been studied. The results show the same trend as observed in fields.


2021 ◽  
Author(s):  
Tesleem Lawal ◽  
Pradeepkumar Ashok ◽  
Eric van Oort ◽  
Dandan Zheng ◽  
Matthew Isbell

AbstractMud motor failure is a significant contributor to non-productive time in lower-cost land drilling operations, e.g. in North America. Typically, motor failure prevention methodologies range from re-designing or performing sophisticated analytical modeling of the motor power section, to modeling motor performance using high-frequency downhole measurements. In this paper, we present data analytics methods to detect and predict motor failures ahead of time using primarily surface drilling measurements.We studied critical drilling and non-drilling events as applicable to motor failure. The impacts of mud motor stalls and drill-off times were investigated during on-bottom drilling. For the off-bottom analysis, the impact of variations in connection practices (pick up practices, time spent backreaming, and time spent exposing the tools to damaging vibrations) was investigated. The relative importance of the various features found to be relevant was calculated and incorporated into a real-time mud motor damage index.A historical drilling dataset, consisting of surface data collected from 45 motor runs in lateral hole sections of unconventional shale wells drilled in early to mid-2019, was used in this study. These motor runs contained a mix of failure and non-failure cases. The model was found to accurately predict motor failure due to motor wear and tear. Generally, the higher the magnitude of the impact stalls experienced by the mud motor, the greater the probability of eventual failure. Variations in connection practices were found not to be a major wear-and-tear factor. However, it was found that connection practices varied significantly and were often driller-dependent.The overall result shows that simple surface drilling parameters can be used to predict mud motor failure. Hence, the value derived from surface sensor information for mud motor management can be maximized without the need to run more costly downhole sensors. In addition to this cost optimization, drillers can now monitor motor degradation in real-time using the new mud motor index described here.


2021 ◽  
Author(s):  
Mario A. Rivas ◽  
Andres A. Ramirez ◽  
Bader S. Al-Zahrani ◽  
Khaled K. Abouelnaaj

Abstract One of the major challenges the Oil and Gas Industry faces nowadays during drilling operations is the twist-offs on Bottom Hole Assembly (BHA) components such as Drilling Jars, Shock Tools, Mud Motors, Roller Reamers, Stabilizers, Drill Collars, PBLs, Heavy Weight Drill Pipe (HWDP), Drill Pipe (DP), etc. To overcome this challenge, an initiative was proposed by performing a study based on twist-offs experienced on BHA components while drilling operations and recommendations are provided to reduce and eliminate twist-offs related to drilling with suboptimal drilling parameters. The statistical data for the twist-off events was collected coming from Daily Drilling Reports, and the analysis was limited to all wells which presented twist-offs on the drillstring and BHA components. Three examples of twist-offs due to drilling with erratic torque are discussed as well as a successful example of drilling parameters optimization. The three examples which presented drillstring and BHA twist-offs were analyzed using available BHA Dynamics and vibrations software and it was discovered that the parameters utilized (operational RPM) fell within the critical zone shearing force peaks (resonance vibrations). The components with the most twist-offs were identified. The hole size where we have the most twist-offs were also identified, which will help in focusing on these areas for the recommendations provided. This analysis will help Drilling Engineers and Foremen to foresee vibration dysfunctions and act accordingly by the use of available BHA Dynamics software in order to optimize drilling parameters before and during drilling. By drilling within a safe operating RPM window (away from resonant RPM), there will be reduction in the number of twist-offs and associated lost time.


2021 ◽  
Author(s):  
Salah Bahlany ◽  
Mohammed Maharbi ◽  
Saud Zakwani ◽  
Faisal Busaidi ◽  
Ferrante Benvenuti

Abstract Wellbore stability problems, such as stuck pipe and tight spots, are one of the most critical risks that impact drilling operations. Over several years, Oil and Gas Operator in Middle East has been facing problems associated with stuck pipe and tight spot events, which have a major impact on drilling efficiency, well cost, and the carbon footprint of drilling operations. On average, the operator loses 200 days a year (Non-Productive Time) on stuck pipe and associated fishing operations. Wellbore stability problems are hard to predict due to the varying conditions of drilling operations: different lithology, drilling parameters, pressures, equipment, shifting crews, and multiple well designs. All these factors make the occurrence of a stuck pipe quite hard to mitigate only through human intervention. For this reason, The operator decided to develop an artificial intelligence tool that leverages the whole breadth and depth of operator data (reports, sensor data, well engineering data, lithology data, etc.) in order to predict and prevent wellbore stability problems. The tool informs well engineers and rig crews about possible risks both during the well planning and well execution phase, suggesting possible mitigation actions to avoid getting stuck. Since the alarms are given ahead of the bit, several hours before the possible occurrence of the event, the well engineers and rig crews have ample time to react to the alarms and prevent its occurrence. So far, the tool has been deployed in a pilot phase on 38 wells giving 44 true alarms with a recall of 94%. Since mid-2021 operator has been rolling out the tool scaling to the whole drilling operations (over 40 rigs).


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


Author(s):  
Y. D. Mulia

For S-15 and S-14 wells at South S Field, drilling of the 12-1/4” hole section became the longest tangent hole section interval of both wells. There were several challenges identified where hole problems can occur. The hole problems often occur in the unconsolidated sand layers and porous limestone formation sections of the hole during tripping in/out operations. Most of the hole problems are closely related to the design of the Bottom Hole Assembly (BHA). In many instances, hole problems resulted in significant additional drilling time. As an effort to resolve this issue, a new BHA setup was then designed to enhance the BHA drilling performance and eventually eliminate hole problems while drilling. The basic idea of the enhanced BHA is to provide more annulus clearance and limber BHA. The purpose is to reduce the Equivalent Circulating Density (ECD,) less contact area with formation, and reduce packoff risk while drilling through an unconsolidated section of the rocks. Engineering simulations were conducted to ensure that the enhanced BHA were able to deliver a good drilling performance. As a results, improved drilling performance can be seen on S-14 well which applied the enhanced BHA design. The enhanced BHA was able to drill the 12-1/4” tangent hole section to total depth (TD) with certain drilling parameter. Hole problems were no longer an issue during tripping out/in operation. This improvement led to significant rig time and cost savings of intermediate hole section drilling compared to S-15 well. The new enhanced BHA design has become one of the company’s benchmarks for drilling directional wells in South S Field.


Author(s):  
Jialin Tian ◽  
Xuehua Hu ◽  
Liming Dai ◽  
Lin Yang ◽  
Yi Yang ◽  
...  

This paper presents a new drilling tool with multidirectional and controllable vibrations for enhancing the drilling rate of penetration and reducing the wellbore friction in complex well structure. Based on the structure design, the working mechanism is analyzed in downhole conditions. Then, combined with the impact theory and the drilling process, the theoretical models including the various impact forces are established. Also, to study the downhole performance, the bottom hole assembly dynamics characteristics in new condition are discussed. Moreover, to study the influence of key parameters on the impact force, the parabolic effect of the tool and the rebound of the drill string were considered, and the kinematics and mechanical properties of the new tool under working conditions were calculated. For the importance of the roller as a vibration generator, the displacement trajectory of the roller under different rotating speed and weight on bit was compared and analyzed. The reliable and accuracy of the theoretical model were verified by comparing the calculation results and experimental test results. The results show that the new design can produce a continuous and stable periodic impact. By adjusting the design parameter matching to the working condition, the bottom hole assembly with the new tool can improve the rate of penetration and reduce the wellbore friction or drilling stick-slip with benign vibration. The analysis model can also be used for a similar method or design just by changing the relative parameters. The research and results can provide references for enhancing drilling efficiency and safe production.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 95
Author(s):  
Ming Xu ◽  
Cheng Rong ◽  
Long He

Spiders rely on a hydraulic system to stretch their legs but use muscles to make their legs flex. The compound drive of hydraulics and muscle makes an integrate dexterous structure with powerful locomotion abilities, which perfectly meets the primary requirements of advanced robots. Inspired by this hydraulics-muscle co-drive joint, a novel flexible joint actuator was proposed and its driving characteristics were preliminarily explored. The bio-inspired flexible joint manifested as a double-constrained balloon actuator, which was fabricated by the composite process of 3D printing and casting. To evaluate its performance, the mathematical model was deduced, as well as the finite element analysis (FEA) model. A series of experiments on the rotation angles, driving forces, and efficiencies of the flexible joint were carried out and compared with the mathematical calculations and FEA simulations. The results show that the accuracy of the two theoretical models can be used to assess the joint actuator. The locomotion test of a soft arthropod robot with two flexible joints was also implemented, where the moving speed reached 22 mm/s and the feasibility of the proposed flexible joint applied to a soft robot was demonstrated.


Author(s):  
Xian-Kui Zhu ◽  
Rick Wang

Mechanical dents often occur in transmission pipelines, and are recognized as one of major threats to pipeline integrity because of the potential fatigue failure due to cyclic pressures. With matured in-line-inspection (ILI) technology, mechanical dents can be identified from the ILI runs. Based on ILI measured dent profiles, finite element analysis (FEA) is commonly used to simulate stresses and strains in a dent, and to predict fatigue life of the dented pipeline. However, the dent profile defined by ILI data is a purely geometric shape without residual stresses nor plastic deformation history, and is different from its actual dent that contains residual stresses/strains due to dent creation and re-rounding. As a result, the FEA results of an ILI dent may not represent those of the actual dent, and may lead to inaccurate or incorrect results. To investigate the effect of residual stress or plastic deformation history on mechanics responses and fatigue life of an actual dent, three dent models are considered in this paper: (a) a true dent with residual stresses and dent formation history, (b) a purely geometric dent having the true dent profile with all stress/strain history removed from it, and (c) a purely geometric dent having an ILI defined dent profile with all stress/strain history removed from it. Using a three-dimensional FEA model, those three dents are simulated in the elastic-plastic conditions. The FEA results showed that the two geometric dents determine significantly different stresses and strains in comparison to those in the true dent, and overpredict the fatigue life or burst pressure of the true dent. On this basis, suggestions are made on how to use the ILI data to predict the dent fatigue life.


Sign in / Sign up

Export Citation Format

Share Document