Enabling Safe and Efficient Well Plug & Abandonments Through Use of Rigless Technologies

2021 ◽  
Author(s):  
Oleksandr Spuskanyuk ◽  
David C Haeberle ◽  
Brandon Max Baumert ◽  
Brian Matthew King ◽  
Benjamin T Hillier

Abstract The growing number of upcoming well abandonments has become an important driver to seek efficiencies in optimizing abandonment costs while establishing long term well integrity and complying with local regulatory requirements. With an increasing global inventory of Plug and Abandonment (P&A) candidates, Exxonmobil has been driven to look for the most reliable, safe, and cost-efficient P&A technologies. ExxonMobil's P&A guidelines are consistent with and often more stringent than the local regulatory requirements but are also achievable, at least in part, with rigless technologies, leading to a more cost-efficient approach while ensuring well integrity. The objective of this paper is to demonstrate the success of rigless abandonments and their benefits compared to rig-based solutions. When developing a well abandonment plan, it is essential to consider a number of factors. These include local regulations, identification of zones to be isolated and suitable caprocks, and recognition of constraints including well history, conditions and uncertainties. Teams should begin with low cost operations without a rig if possible, estimate costs and effectiveness to achieve the barrier requirements, and evaluate batch operation opportunities for multi-well programs. ExxonMobil case studies are shown to help describe in detail how to make decisions about applicability of rigless abandonment options and how to properly execute such abandonments to achieve compliance with the barrier requirements. It has been demonstrated that significant cost savings can be achieved by staging the abandonment program in a way that lower cost technologies are utilized during the early stages of well abandonment, starting with wireline where possible, followed by coiled tubing and finally by a pulling unit, as appropriate. P&A execution could be achieved without a rig in a majority of cases, including most offshore wells, with the need to use a rig only in special circumstances or phases of execution. It is important to note that the barrier placement and safety of rigless P&A execution will not be compromised, as compared to the rig-based P&As. Additional cost savings could be achieved by further optimizing P&A design at the well design stage, ensuring that there are no built-in limiters that would prevent rigless P&A execution at the end of well life. Several case studies from ExxonMobil's global offshore experience demonstrate the feasibility and effectiveness of rigless P&A operations, with significant cost savings compared to rig-based P&As. It has been evident that rigless P&A choice is applicable to the variety of ExxonMobil's P&A projects of different complexities, with the same or superior quality of abandonment and safety record.

Author(s):  
Benjamin R. Hubbard ◽  
Joshua M. Pearce

This study provides designs for a low-cost, easily replicable open source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open source scale was found to be repeatable within 0.1g with multiple load cells, with even better precision (0.01g) depending on load cell range and style. The scale tracks linearly with proprietary lab-grade scales, meeting the performance specified in the load cell data sheets, indicating that it is accurate across the range of the load cell installed. The smallest loadcell tested(100g) offers precision on the order of a commercial digital mass balance. The scale can be produced at significant cost savings compared to scales of comparable range and precision when serial capability is present. The cost savings increase significantly as the range of the scale increases and are particularly well-suited for resource-constrained medical and scientific facilities.


2021 ◽  
pp. 1-14
Author(s):  
Ashutosh Dikshit ◽  
Amrendra Kumar ◽  
Glenn Woiceshyn

Summary Interest is high in a method to reliably run single-trip completions without involving complex/expensive technologies (Robertson et al. 2019). The reward for such a design would be reduced rig time, safety risks, and completion costs. As described herein, a unique pressure-activated sliding side door (PSSD) valve was developed and field tested to open without intervention after completion is circulated to total depth (TD) and a liner hanger and openhole isolation packers are set. A field-provensliding-sleeve door (SSD) valve that required shifting via a shifting tool run on coiled tubing, slickline (SL), or wireline was upgraded to open automatically after relieving tubing pressure once packers (and/or a liner hanger) are set. This PSSD technology, which is integrable to almost any type of sand control screen, is equipped with a backup contingency should the primary mechanism fail to open. Once opened, the installed PSSDs can be shifted mechanically with unlimited frequency. The two- or three-position valve can be integrated with inflow control devices (ICDs) (includes autonomous ICDs/autonomous inflow control valves) and allows mechanical shifting at any time after installation to close, stimulate or adjust ICD settings. After a computer-aided design stage to achieve all the operational/mechanical requirements, prototypes were built and tested, followed by field installations. The design stage provided some challenges even though the pressure-activation feature was being added to a mature/proven SSD technology. Prototype testing in a full-scale vertical test well proved valuable because it revealed failure modes that could not have appeared in the smaller-scale laboratory test facilities. Lessons learned from the first field trial helped improve onsite handling procedures. The production logging tool run on first installation confirmed the PSSDs with ICDs opened as designed. The second field installation involved a different size and configuration, in which PSSDs with ICDs performed as designed. The unique two- or three-position PSSD accommodates any type of sand control or debris screen and any type of ICD for production/injection. The PSSD allows the flexibility to change ICD size easily at the wellsite. Therefore, this technology can be used in carbonate as well as sandstone wells. Wells that normally could not justify the expense of existing single-trip completion technologies can now benefit from the cost savings of single-trip completions, including ones that require ICD and stimulation options.


2021 ◽  
Author(s):  
Jamie Dorey ◽  
Georgy Rassadkin ◽  
Douglas Ridgway

Abstract The field experience in the continental US suggests that approximately 33% of plug and abandonment operations are non-routine, and 5% require re-entry (Greer C.R., 2018). In some scenarios, the most cost-efficient option for the intervention is drilling an intercept well to re-enter the target well or multiple wells externally using advanced survey management and magnetic ranging techniques. This paper presents the methods applied of relief well methodologies from the planning to execution of a complex multiple-well abandonment project. Improvements in Active Magnetic Ranging sensor design and applications have improved the availability of highly precise tools for the purpose of locating and intercepting wellbores where access is not possible. These instruments were commonplace on relief well interventions, however, have found a new application in solving one of the major issues facing the oil and gas industry. Subsurface abandonments are a complex task that requires a robust methodology. In this paper, we describe the techniques that have been built upon the best practices from industry experience (ISCWSA WISC eBook). This paper also illustrates how the combination of advanced survey management, gyro surveying, and magnetic ranging can be used following the best industry practices for fast and cost-efficient non-routine plug and abandonment. Case studies of several abandonment projects are presented showing the various technical challenges which are common on idle and legacy wells. The projects include wells that are currently under the ownership of an operator and orphaned wells that have been insufficiently abandoned and left idle over many decades. The case studies outline how the application of relief well methodologies to the execution of complex sub surface interventions led to the successful outcomes of meeting environmental and government regulations for wellbore abandonment. This includes performing multiple zonal isolations between reservoirs, water zones and preventing oil and gas seepage to the surface. The projects and their outcomes prove economically viable strategies for tackling the growing issue of idle and orphaned wells globally in a fiscally responsible manner. Combining industry best practice methods for relief well drilling, along with the technological advancements in magnetic ranging systems is a solution for one of the largest dilemmas facing the oil and gas industry in relation to idle and orphaned wellbores. These applications allow previously considered impossible abandonments to be completed with a high probability of long-term success in permanent abandonment.


2009 ◽  
Vol 131 (1) ◽  
Author(s):  
Kent Perry

Although the microhole coiled tubing drilling rigs have been used extensively in Canada, their application in the U.S. has been very limited. In an effort to introduce this technology to the U.S. operators, GTI, with the support of DOE∕NETL, has completed a successful field testing of the coiled tubing microhole drilling technology. In this paper we report results of field testing of the system in 25 wells drilled in the Niobrara unconventional gas play of Kansas and Colorado. The objective of the field test was to measure and document the rig performance under actual drilling conditions. In these tests, a coiled tubing drilling rig (designed and built by T Gipson with Advanced Drilling Technologies Inc.) was utilized. The rig operations have continued to improve to the point where it now drills a 3100ft well in a single day. Well cost savings of approximately 30% over conventional rotary well drilling have been documented. A description of the rig and a summary of its performance in the Niobrara unconventional gas play are included. In addition, an estimate of economic advantages of widespread application of microhole drilling technology in the lower 48 states is presented.


Author(s):  
Kent F. Perry

Although The Microhole Coiled Tubing Drilling rigs have been used extensively in Canada, their application in the U.S. has been very limited. In an effort to introduce this technology to the U.S. operators; GTI, with the support of DOE/NETL has completed successful field testing of coiled tubing microhole drilling technology. In this paper we report results of field testing of the system in 25 wells drilled in the Niobrara unconventional gas play of Kansas and Colorado. The objective of the field test was to measure and document the rig performance under actual drilling conditions. In these tests, a coiled tubing drilling rig (designed and bulit by Tom Gipson with Advanced Drilling Technologies Inc. (ADT)) was utilized. The rig operations have continued to improve to the point where it now drills a 3,100-foot well in a single day. Well cost savings of approximately 30% over conventional rotary well drilling have been documented. A description of the rig and a summary of its performance in the Niobrara unconventional gas play are included. In addition, an estimate of economic advantages of widespread application of microhole drilling technology in the Lower 48 States is presented.


2021 ◽  
Author(s):  
Olalere Sunday Oloruntobi ◽  
Prasanna Kumar Chandran ◽  
M Azuan Abu Bakar ◽  
Nurul Nazmin Zulkarnain ◽  
Hasrizal A Rahman ◽  
...  

Abstract Operators are faced with never-ending well integrity issues relating to tubing leaks. This situation is particularly important in oil and gas wells that are producing in corrosive environments. When a well can no longer be safely produced due to well integrity issues relating to tubing leaks, an expensive workover is often performed to restore the tubing integrity. To improve the economics of a well intervention involving tubing leak repairs, a new cost-effective method is being proposed. The novel technology involves the installation of reinforced thermoplastic pipe (RTP) inside the existing tubing to isolate multiple leaks using a coiled tubing unit or an E-line. The RTP is engineered for downhole applications with custom designed connectors and accessories. It is designed to handle corrosive fluids (CO2 and H2S) and prevent downhole erosion caused by sand production. The RTP can be used to eliminate tubing – annulus communication in both producers and injectors with full compliance to well integrity management system. The results of the field trial in a gas injector well in Malaysia basin show that the RTP can provide a reliable means of restoring and enhancing the production of oil and gas with considerable cost savings (up to 80% cost reduction when compared to a conventional workover). In most cases, the high cost associated with a conventional workover can make it uneconomical when compared to the expected hydrocarbon recovery from the well, resulting in production deferment (well shut-in). The RTP can significantly increase the viability of repairing a larger percentage of the wells that are shut-in due to the loss of tubing integrity when the hydrocarbon recovery from the well is insufficient to justify a full workover. The significant cost savings provided by the RTP would dramatically improve economics and would likely result in more reserves recovered. The RTP also has a smoother surface that contributes to minimum friction and reduces the risk of scales formation when compared to the steel tubing of the same internal diameter.


Author(s):  
Fatemeh Moeinikia ◽  
Kjell Kåre Fjelde ◽  
Jostein Sørbø ◽  
Arild Saasen ◽  
Torbjørn Vrålstad

There is a large number of subsea production wells offshore Norway approaching the end of their lifetime. Considering high spread rate of semisubmersible rigs, abandonment operations of these wells will be quite expensive. Moreover, Plug and abandonment (P&A) can easily contribute with 25% of the total costs of drilling for exploration wells offshore Norway. Hence it is of great importance to seek approaches and solutions to reduce the P&A cost. This paper reviews some possible new ways and also alternative technologies as the solutions to cut down the P&A expenses. Some of these technologies are now being used offshore Norway. In the first section of this paper, challenges of performing P&A operations offshore Norway together with the main cost drivers are discussed. It is then briefly argued how to consider issues such as barriers setting depth, cementing depth and logging in the design and well construction phases to ease or avoid future P&A challenges. For hydrocarbon exploitation in the Barents Sea and Arctic regions it is important to take into account the P&A phase in the early stage of planning and development. Light well intervention vessels as alternatives to semisubmersible rigs are recognized of being the largest contributor to cost saving. It will then be discussed to what extent vessel technologies can cut down the expenses for subsea abandonment. New ways of performing P&A can be another contributor to cost saving. It is shown how research and testing can assure the operators of new ways for performing P&A. Retrieval of production tubing is a challenging suboperation such that it imposes significant cost to subsea well abandonment. There have been performed studies on how P&A could be performed with tubing left in hole and it is of interest to pursue this further. We will investigate how the abandonment operations can be simplified and be more cost efficient if the production tubing can be left inside the well where the basic assumptions for being able to do it is accounted for. In addition, some complexities in abandonment operations can cause additional cost. An example of such complexities can be the need to establish two permanent barriers for potential permeable zones in overburden. It will be demonstrated how much can be saved with respect to cost if the regulations allow to ease some parts of abandonment operations. In this study, a probabilistic approach as a systematic tool to produce unbiased results is applied to quantify cost savings of new alternatives compared to the traditional ones.


2010 ◽  
Vol 21 (3) ◽  
pp. 9-15 ◽  
Author(s):  
Khalil Elahee

Many developing countries, including African ones, look forward to developing strong integrated textile industries to add value to already-available raw materials. Dyeing and finishing activities are, however, energy-intensive. In many cases, these depend on imported fossil fuels. By turning to heat recovery, significant cost savings can be achieved improving profitability and competitiveness. The techniques and technologies of heat recovery from waste water and exhaust air are analysed. Experiences prove that in most cases heat recovery requires low investment and has a low payback of normally less than 2 years. The case of the Mauritian dyeing and finishing industry is highlighted, including the possible use of a low-cost heat recovery unit made from indigenous resources.


Instruments ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 18 ◽  
Author(s):  
Benjamin R. Hubbard ◽  
Joshua M. Pearce

This study provides designs for a low-cost, easily replicable open-source lab-grade digital scale that can be used as a precision balance. The design is such that it can be manufactured for use in most labs throughout the world with open-source RepRap-class material extrusion-based 3-D printers for the mechanical components and readily available open-source electronics including the Arduino Nano. Several versions of the design were fabricated and tested for precision and accuracy for a range of load cells. The results showed the open-source scale was found to be repeatable within 0.05 g with multiple load cells, with even better precision (0.005 g) depending on load cell range and style. The scale tracks linearly with proprietary lab-grade scales, meeting the performance specified in the load cell data sheets, indicating that it is accurate across the range of the load cell installed. The smallest load cell tested (100 g) offers precision on the order of a commercial digital mass balance. The scale can be produced at significant cost savings compared to scales of comparable range and precision when serial capability is present. The cost savings increase significantly as the range of the scale increases and are particularly well-suited for resource-constrained medical and scientific facilities.


Sign in / Sign up

Export Citation Format

Share Document