A Data Driven Artificial Intelligence Framework for Hydrogen Production Optimization in Waterflooded Hydrocarbon Reservoir

2021 ◽  
Author(s):  
Klemens Katterbauer ◽  
Abdulaziz Qasim ◽  
Alberto Marsala ◽  
Ali Yousef

Abstract Hydrogen has become a very promising green energy source that can be easily stored and transported, and it has the potential to be utilized in a variety of applications. Hydrogen, as a power source, has the benefits of being easily transportable and stored over long periods of times, and does not lead to any carbon emissions related to the utilization of the power source. Thermal EOR methods are among the most commonly used recovery methods. They involve the introduction of thermal energy or heat into the reservoir to raise the temperature of the oil and reduce its viscosity. The heat makes the oil mobile and assists in moving it towards the producer wells. The heat can be added externally by injecting a hot fluid such as steam or hot water into the formations, or it can be generated internally through in-situ combustion by burning the oil in depleted gas or waterflooded reservoirs using air or oxygen. This method is an attractive alternative to produce cost-efficiently significant amounts of hydrogen from these depleted or waterflooded reservoirs. A major challenge is to optimize injection of air/oxygen to maximize hydrogen production via ensuring that the in-situ combustion sufficiently supports the breakdown of water into hydrogen molecules. In-situ combustion or fireflood is a method consisting of volumes of air or oxygen injected into a well and ignited. A burning zone is propagated through the reservoir from the injection well to the producing wells. The in-situ combustion creates a bank of steam, gas from the combustion process, and evaporated hydrocarbons that drive the reservoir oil into the producing wells. There are three types of in-situ combustion processes: dry forward, dry reverse and wet forward combustion. In a dry forward process only air is injected and the combustion front moves from the injector to the producer. The wet forward injection is the same process where air and water are injected either simultaneously or alternating. Artificial intelligence (AI) practices have allowed to significantly improve optimization of reservoir production, based on observations in the near wellbore reservoir layers. This work utilizes a data-driven physics-inspired AI model for the optimization of hydrogen recovery via the injection of oxygen, where the injection and production parameters are optimized, minimizing oxygen injection while maximizing hydrogen production and recovery. Multiple physical and data-driven models and their parameters are optimized based on observations with the objective to determine the best sustainable combination. The framework was examined on a synthetic reservoir model with multiple injector and producing wells. Historical injection and production were available for a time period of three years for various oxygen injection and hydrogen production levels. Various time-series deep learning network models were investigated, with random forest time series models incorporating a modified mass balance – reaction kinetics model for in-situ combustion performing most effectively. A robust global optimization approach, based on an artificial intelligence genetic optimization, allows for simultaneously optimization of an injection pattern and uncertainty quantification. Results indicate potential for significant reduction in required oxygen injection volumes, while maximizing hydrogen recovery. This work represents a first and innovative approach to enhance hydrogen recovery from waterflooded reservoirs via oxygen injection. The data-driven physics inspired AI genetic optimization framework allows to optimize oxygen injection while maximizing hydrogen production.

2021 ◽  
Vol 73 (03) ◽  
pp. 38-40
Author(s):  
Trent Jacobs

As the oil and gas industry scans the known universe for ways to diversify its portfolio with alternative forms of energy, it might want to look under its own feet, too. For inside every oil reservoir, there may be a hydrogen reservoir just waiting to get out. The concept comes courtesy of Calgary-based Proton Technologies. Founded in 2015, the young firm is the operator of an aging heavy oil field in Saskatchewan. There, on a small patch of flat farm-land, Proton has been producing oil to pay the bills. At the same time, it has been experimenting with injecting oxygen into its reservoir in a bid to produce exclusively hydrogen. Proton says its process is built on a technical foundation that includes years of research and works at the demonstration scale. Soon, the firm hopes to prove it is also profitable. While it produces its own hydrogen, Proton is licensing out the technology to others. In January, fellow Canadian operator Whitecap Resources secured a hydrogen production license of up to 500 metric tons/day from Proton. Whitecap produces about 48,000 B/D, and thanks to carbon sequestration, the operator has claimed a net negative emissions status since 2018. Proton says it has struck similar licensing deals with other Canadian operators but that these companies have not yet made public announcements. Where these projects go from here may end up representing the ultimate test for Proton’s innovative twist on the in-situ combustion process known so well to the heavy-oil sector. “In-situ combustion has been used in more than 500 projects worldwide over the last century. And, they have all produced hydrogen,” said Grant Strem, a cofounder and the CEO of Proton. Strem is a petroleum geologist by back-ground who spent the majority of his career working on heavy-oil projects for Canadian producers and research analysis with the banks that fund the upstream sector. While his new venture remains registered as an oil company, the self-described explorationist has come to look at oil fields very differently than he used to. “In an oil field, you have oil—hydrocarbons, which are made of hydrogen and carbon. The other fluid down there is H2O. So, an oil field is really a giant hydrogen-rich, energy-dense system that’s all conveniently accessible by wells,” Strem explained. But, in those past examples, the hundreds of other in-situ combustion projects, hydrogen production was merely a byproduct, an associated gas of sorts. It was the result of several reactions generated by air injections that producers use an oxidizer to heat up the heavy oil and get it flowing. What Proton wants to do is to super-charge the hydrogen-generating reactions by using the oil as fuel while leaving the carbon where it is. That ambition includes doing so at a price point that is roughly five times below that of Canadian natural gas prices and an even smaller fraction of what other hydrogen-generation methods cost.


2018 ◽  
Author(s):  
Olufolake Ogunbanwo ◽  
Kuy Hun Koh Yoo ◽  
Margot Gerritsen ◽  
Anthony R. Kovscek

1984 ◽  
Vol 75 ◽  
pp. 743-759 ◽  
Author(s):  
Kerry T. Nock

ABSTRACTA mission to rendezvous with the rings of Saturn is studied with regard to science rationale and instrumentation and engineering feasibility and design. Future detailedin situexploration of the rings of Saturn will require spacecraft systems with enormous propulsive capability. NASA is currently studying the critical technologies for just such a system, called Nuclear Electric Propulsion (NEP). Electric propulsion is the only technology which can effectively provide the required total impulse for this demanding mission. Furthermore, the power source must be nuclear because the solar energy reaching Saturn is only 1% of that at the Earth. An important aspect of this mission is the ability of the low thrust propulsion system to continuously boost the spacecraft above the ring plane as it spirals in toward Saturn, thus enabling scientific measurements of ring particles from only a few kilometers.


Author(s):  
Lucas Henrique Pagoto Deoclecio ◽  
Filipe Arthur Firmino Monhol ◽  
Antônio Carlos Barbosa Zancanella

2018 ◽  
Vol 42 (3) ◽  
pp. 405-418
Author(s):  
Cristina ITALIANO ◽  
Lidia PINO ◽  
Massimo LAGANÀ ◽  
Antonio VITA

This book explores the intertwining domains of artificial intelligence (AI) and ethics—two highly divergent fields which at first seem to have nothing to do with one another. AI is a collection of computational methods for studying human knowledge, learning, and behavior, including by building agents able to know, learn, and behave. Ethics is a body of human knowledge—far from completely understood—that helps agents (humans today, but perhaps eventually robots and other AIs) decide how they and others should behave. Despite these differences, however, the rapid development in AI technology today has led to a growing number of ethical issues in a multitude of fields, ranging from disciplines as far-reaching as international human rights law to issues as intimate as personal identity and sexuality. In fact, the number and variety of topics in this volume illustrate the width, diversity of content, and at times exasperating vagueness of the boundaries of “AI Ethics” as a domain of inquiry. Within this discourse, the book points to the capacity of sociotechnical systems that utilize data-driven algorithms to classify, to make decisions, and to control complex systems. Given the wide-reaching and often intimate impact these AI systems have on daily human lives, this volume attempts to address the increasingly complicated relations between humanity and artificial intelligence. It considers not only how humanity must conduct themselves toward AI but also how AI must behave toward humanity.


2021 ◽  
Vol 11 (2) ◽  
pp. 870
Author(s):  
Galena Pisoni ◽  
Natalia Díaz-Rodríguez ◽  
Hannie Gijlers ◽  
Linda Tonolli

This paper reviews the literature concerning technology used for creating and delivering accessible museum and cultural heritage sites experiences. It highlights the importance of the delivery suited for everyone from different areas of expertise, namely interaction design, pedagogical and participatory design, and it presents how recent and future artificial intelligence (AI) developments can be used for this aim, i.e.,improving and widening online and in situ accessibility. From the literature review analysis, we articulate a conceptual framework that incorporates key elements that constitute museum and cultural heritage online experiences and how these elements are related to each other. Concrete opportunities for future directions empirical research for accessibility of cultural heritage contents are suggested and further discussed.


Author(s):  
Marina Johnson ◽  
Rashmi Jain ◽  
Peggy Brennan-Tonetta ◽  
Ethne Swartz ◽  
Deborah Silver ◽  
...  

2020 ◽  
pp. 1-14
Author(s):  
Richard D. Ray ◽  
Kristine M. Larson ◽  
Bruce J. Haines

Abstract New determinations of ocean tides are extracted from high-rate Global Positioning System (GPS) solutions at nine stations sitting on the Ross Ice Shelf. Five are multi-year time series. Three older time series are only 2–3 weeks long. These are not ideal, but they are still useful because they provide the only in situ tide observations in that sector of the ice shelf. The long tide-gauge observations from Scott Base and Cape Roberts are also reanalysed. They allow determination of some previously neglected tidal phenomena in this region, such as third-degree tides, and they provide context for analysis of the shorter datasets. The semidiurnal tides are small at all sites, yet M2 undergoes a clear seasonal cycle, which was first noted by Sir George Darwin while studying measurements from the Discovery expedition. Darwin saw a much larger modulation than we observe, and we consider possible explanations - instrumental or climatic - for this difference.


Urban Studies ◽  
2021 ◽  
pp. 004209802110140
Author(s):  
Sarah Barns

This commentary interrogates what it means for routine urban behaviours to now be replicating themselves computationally. The emergence of autonomous or artificial intelligence points to the powerful role of big data in the city, as increasingly powerful computational models are now capable of replicating and reproducing existing spatial patterns and activities. I discuss these emergent urban systems of learned or trained intelligence as being at once radical and routine. Just as the material and behavioural conditions that give rise to urban big data demand attention, so do the generative design principles of data-driven models of urban behaviour, as they are increasingly put to use in the production of replicable, autonomous urban futures.


Sign in / Sign up

Export Citation Format

Share Document