Role of Well Logs and Seismic Data Conditioning in Improving the Imaging of Complex Reservoirs from Abu Dhabi

2021 ◽  
Author(s):  
Khalid Obaid ◽  
Muhammad Aamir ◽  
Tarek Yehia Nafie ◽  
Omar Aly ◽  
Widad Krissat ◽  
...  

Abstract Rock physics/seismic inversion is a powerful tool that deliver information about intra-wells rocks elastic attributes and reservoir properties such as porosity, saturation and rock lithology classification. In principle, inversion is like an engine that should be fueled by proper input quality of both seismic and well data. As for the well data, sonic and density logs measure the rock properties a few inches from the borehole. Reliability of sonic transit-time and bulk density logs can be affected by large and rapid variation in the diameter and shape of the borehole cross-section, as well as the process of drilling fluid invasion. The basic assumption for acoustic well logs editing and conditioning is to use other recorded logs (not affected by bad-hole conditions) in a Multivariate-Regression Algorithm. In addition, Fluid Substitution was implemented to correct for the mud invasion that affects the acoustic and elastic properties based on the PVT data for fluid properties computation. The logs were then quality checked by multiple cross-plotting comparisons to the standard Rock-physics trends templates. As for seismic data, there are several factors affecting the quality of surface seismic data including the presence of residual noise and multiples contamination that caused improper amplitude balancing. Optimizing the seismic data processing for the inversion studies require reviewing and conditioning the seismic gathers and pre-stack volumes, guided by a deterministic seismic-to-well tie analysis after every major stage of the processing sequence. The applied processes are mainly consisting of Curvelet domain noise attenuation to attenuate residual noise. This was followed by high resolution Radon anti-multiple to attenuate residual surface multiples and Extended interbed multiple prediction to attenuate interbed multiples. In addition, Offset dependent amplitude and spectral balancing were applied to maintain the seismic amplitudes fidelity. This paper will illustrate a case from Abu Dhabi where data conditioning results improved the Hydrocarbon saturated carbonates vs brine saturated carbonate and the lithology predictions, leading to optimizing field development plans and drilling operations.

2021 ◽  
Author(s):  
Pavlo Kuzmenko ◽  
Rustem Valiakhmetov ◽  
Francesco Gerecitano ◽  
Viktor Maliar ◽  
Grigori Kashuba ◽  
...  

Abstract The seismic data have historically been utilized to perform structural interpretation of the geological subsurface. Modern approaches of Quantitative Interpretation are intended to extract geologically valuable information from the seismic data. This work demonstrates how rock physics enables optimal prediction of reservoir properties from seismic derived attributes. Using a seismic-driven approach with incorporated prior geological knowledge into a probabilistic subsurface model allowed capturing uncertainty and quantifying the risk for targeting new wells in the unexplored areas. Elastic properties estimated from the acquired seismic data are influenced by the depositional environment, fluid content, and local geological trends. By applying the rock physics model, we were able to predict the elastic properties of a potential lithology away from the well control points in the subsurface whether or not it has been penetrated. Seismic amplitude variation with incident angle (AVO) and azimuth (AVAZ) jointly with rock-derived petrophysical interpretations were used for stochastical modeling to capture the reservoir distribution over the deep Visean formation. The seismic inversion was calibrated by available well log data and by traditional structural interpretation. Seismic elastic inversion results in a deep Lower Carboniferous target in the central part of the DDB are described. The fluid has minimal effect on the density and Vp. Well logs with cross-dipole acoustics are used together with wide-azimuth seismic data, processed with amplitude control. It is determined that seismic anisotropy increases in carbonate deposits. The result covers a set of lithoclasses and related probabilities: clay minerals, tight sandstones, porous sandstones, and carbonates. We analyzed the influence of maximum angles determination for elastic inversion that varied from 32.5 to 38.5 degrees. The greatest influence of the far angles selection is on the density. AI does not change significantly. Probably the 38,5 degrees provides a superior response above the carbonates. It does not seem to damage the overall AVA behavior, which result in a good density outcome, as higher angles of incidence are included. It gives a better tie to the wells for the high density layers over the interval of interest. Sand probability cube must always considered in the interpretation of the lithological classification that in many cases may be misleading (i.e. when sand and shale probabilities are very close to each other, because of small changes in elastic parameters). The authors provide an integrated holistic approach for quantitative interpretation, subsurface modeling, uncertainty evaluation, and characterization of reservoir distribution using pre-existing well logs and recently acquired seismic data. This paper underpins the previous efforts and encourages the work yet to be fulfilled on this subject. We will describe how quantitative interpretation was used for describing the reservoir, highlight values and uncertainties, and point a way forward for further improvement of the process for effective subsurface modeling.


SPE Journal ◽  
2008 ◽  
Vol 13 (04) ◽  
pp. 412-422
Author(s):  
Subhash Kalla ◽  
Christopher D. White ◽  
James Gunning ◽  
Michael Glinsky

Summary Accurate reservoir simulation requires data-rich geomodels. In this paper, geomodels integrate stochastic seismic inversion results (for means and variances of packages of meter-scale beds), geologic modeling (for a framework and priors), rock physics (to relate seismic to flow properties), and geostatistics (for spatially correlated variability). These elements are combined in a Bayesian framework. The proposed workflow produces models with plausible bedding geometries, where each geomodel agrees with seismic data to the level consistent with the signal-to-noise ratio of the inversion. An ensemble of subseismic models estimates the means and variances of properties throughout the flow simulation grid. Grid geometries with possible pinchouts can be simulated using auxiliary variables in a Markov chain Monte Carlo (MCMC) method. Efficient implementations of this method require a posterior covariance matrix for layer thicknesses. Under assumptions that are not too restrictive, the inverse of the posterior covariance matrix can be approximated as a Toeplitz matrix, which makes the MCMC calculations efficient. The proposed method is examined using two-layer examples. Then, convergence is demonstrated for a synthetic 3D, 10,000 trace, 10 layer cornerpoint model. Performance is acceptable. The Bayesian framework introduces plausible subseismic features into flow models, whilst avoiding overconstraining to seismic data, well data, or the conceptual geologic model. The methods outlined in this paper for honoring probabilistic constraints on total thickness are general, and need not be confined to thickness data obtained from seismic inversion: Any spatially dense estimates of total thickness and its variance can be used, or the truncated geostatistical model could be used without any dense constraints. Introduction Reservoir simulation models are constructed from sparse well data and dense seismic data, using geologic concepts to constrain stratigraphy and property variations. Reservoir models should integrate spare, precise well data and dense, imprecise seismic data. Because of the sparseness of well data, stochastically inverted seismic data can improve estimates of reservoir geometry and average properties. Although seismic data are densely distributed compared to well data, they are uninformative about meter-scale features. Beds thinner than about 1/8 to 1/4 the dominant seismic wavelength cannot be resolved in seismic surveys (Dobrin and Savit 1988; Widess 1973). For depths of ˜3000 m, the maximum frequency in the signal is typically about 40 Hz, and for average velocities of ˜2,000 m/s, this translates to best resolutions of about 10 m. Besides the limited resolution, seismic-derived depths and thicknesses are uncertain because of noise in the seismic data and uncertainty in the rock physics models (Gunning and Glinsky 2004, 2006). This resolution limit and uncertainties associated with seismic depth and thickness estimates have commonly limited the use of seismic data to either inferring the external geometry or guiding modeling of plausible stratigraphic architectures of reservoirs (Deutsch et al. 1996). In contrast, well data reveal fine-scale features but cannot specify interwell geometry. To build a consistent model, conceptual stacking and facies models must be constrained by well and seismic data. The resulting geomodels must be gridded for flow simulation using methods that describe stratal architecture flexibly and efficiently.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C205-C218 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Velocity model building is the first step of seismic inversion and the foundation of the subsequent processing and interpretation workflow. Velocity model building from surface seismic data only becomes severely underdetermined and nonunique when more than one parameter is needed to characterize the velocity anisotropy. The traditional seismic processing workflow sequentially performs seismic velocity model building, structural imaging/interpretation, and lithologic inversion, modifying the subsurface model in each step without verifications against the previously used data. We have developed an integrated model building scheme that uses all available information: seismic data, geologic structural information, well logs, and rock-physics knowledge. We have evaluated the accuracy of the anisotropic model in the image space, in which structural information is estimated. The lithologic inversion results from well logs and the dynamic seismic information (amplitude versus angle) are also fed back to the kinematic seismic inversion via a cross-parameter covariance matrix, which is a multivariate Gaussian approximation to the numerical distribution modeled from stochastic rock-physics modeling. The procedure of building the rock-physics prior information and the improvements using these extra constraints were tested on a Gulf of Mexico data set. The inverted vertical transverse isotropic model not only better focused the seismic image, but it also satisfied the geologic and rock-physics principles.


2014 ◽  
Vol 54 (2) ◽  
pp. 503
Author(s):  
Adi Widyantoro ◽  
Matthew Saul

The analysis of well data from the Enfield field of the Exmouth Sub-basin, WA, indicates that both cementation and pore-filling clay appear to have a stiffening effect on the reservoir sands. The elastic contrast between brine sand and the overlying shale is often small and the large amplitudes observed from seismic data are associated with hydrocarbon content. More detailed rock physics and depth trend analysis of elastic and petrophysical properties, however, indicate significant spatial variability in the cap rock shales across the field with different sand shale mixtures, causing changes in the elastic response of the rock. Areas where shales are softer produce weak seismic amplitude contrasts even with high hydrocarbon saturation; the amplitude response being similar to areas with stiffer shales and brine-filled sands. The variations in reservoir quality are, therefore, masked by the distribution of the brine, oil and gas, as well as the variations in the cap rock. The Enfield rock physics analysis provides an example of reducing amplitude ambiguity over lithology-fluid variation and improves the chance of successful interpretation of the results of seismic inversion.


Geophysics ◽  
2016 ◽  
Vol 81 (5) ◽  
pp. C177-C191 ◽  
Author(s):  
Yunyue Li ◽  
Biondo Biondi ◽  
Robert Clapp ◽  
Dave Nichols

Seismic anisotropy plays an important role in structural imaging and lithologic interpretation. However, anisotropic model building is a challenging underdetermined inverse problem. It is well-understood that single component pressure wave seismic data recorded on the upper surface are insufficient to resolve a unique solution for velocity and anisotropy parameters. To overcome the limitations of seismic data, we have developed an integrated model building scheme based on Bayesian inference to consider seismic data, geologic information, and rock-physics knowledge simultaneously. We have performed the prestack seismic inversion using wave-equation migration velocity analysis (WEMVA) for vertical transverse isotropic (VTI) models. This image-space method enabled automatic geologic interpretation. We have integrated the geologic information as spatial model correlations, applied on each parameter individually. We integrate the rock-physics information as lithologic model correlations, bringing additional information, so that the parameters weakly constrained by seismic are updated as well as the strongly constrained parameters. The constraints provided by the additional information help the inversion converge faster, mitigate the ambiguities among the parameters, and yield VTI models that were consistent with the underlying geologic and lithologic assumptions. We have developed the theoretical framework for the proposed integrated WEMVA for VTI models and determined the added information contained in the regularization terms, especially the rock-physics constraints.


2021 ◽  
Vol 40 (10) ◽  
pp. 751-758
Author(s):  
Fabien Allo ◽  
Jean-Philippe Coulon ◽  
Jean-Luc Formento ◽  
Romain Reboul ◽  
Laure Capar ◽  
...  

Deep neural networks (DNNs) have the potential to streamline the integration of seismic data for reservoir characterization by providing estimates of rock properties that are directly interpretable by geologists and reservoir engineers instead of elastic attributes like most standard seismic inversion methods. However, they have yet to be applied widely in the energy industry because training DNNs requires a large amount of labeled data that is rarely available. Training set augmentation, routinely used in other scientific fields such as image recognition, can address this issue and open the door to DNNs for geophysical applications. Although this approach has been explored in the past, creating realistic synthetic well and seismic data representative of the variable geology of a reservoir remains challenging. Recently introduced theory-guided techniques can help achieve this goal. A key step in these hybrid techniques is the use of theoretical rock-physics models to derive elastic pseudologs from variations of existing petrophysical logs. Rock-physics theories are already commonly relied on to generalize and extrapolate the relationship between rock and elastic properties. Therefore, they are a useful tool to generate a large catalog of alternative pseudologs representing realistic geologic variations away from the existing well locations. While not directly driven by rock physics, neural networks trained on such synthetic catalogs extract the intrinsic rock-physics relationships and are therefore capable of directly estimating rock properties from seismic amplitudes. Neural networks trained on purely synthetic data are applied to a set of 2D poststack seismic lines to characterize a geothermal reservoir located in the Dogger Formation northeast of Paris, France. The goal of the study is to determine the extent of porous and permeable layers encountered at existing geothermal wells and ultimately guide the location and design of future geothermal wells in the area.


2021 ◽  
Vol 19 (3) ◽  
pp. 125-138
Author(s):  
S. Inichinbia ◽  
A.L. Ahmed

This paper presents a rigorous but pragmatic and data driven approach to the science of making seismic-to-well ties. This pragmatic  approach is consistent with the interpreter’s desire to correlate geology to seismic information by the use of the convolution model,  together with least squares matching techniques and statistical measures of fit and accuracy to match the seismic data to the well data. Three wells available on the field provided a chance to estimate the wavelet (both in terms of shape and timing) directly from the seismic and also to ascertain the level of confidence that should be placed in the wavelet. The reflections were interpreted clearly as hard sand at H1000 and soft sand at H4000. A synthetic seismogram was constructed and matched to a real seismic trace and features from the well are correlated to the seismic data. The prime concept in constructing the synthetic is the convolution model, which represents a seismic reflection signal as a sequence of interfering reflection pulses of different amplitudes and polarity but all of the same shape. This pulse shape is the seismic wavelet which is formally, the reflection waveform returned by an isolated reflector of unit strength at the target  depth. The wavelets are near zero phase. The goal and the idea behind these seismic-to-well ties was to obtain information on the sediments, calibration of seismic processing parameters, correlation of formation tops and seismic reflectors, and the derivation of a  wavelet for seismic inversion among others. Three seismic-to-well ties were done using three partial angle stacks and basically two formation tops were correlated. Keywords: seismic, well logs, tie, synthetics, angle stacks, correlation,


Geophysics ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. MR187-MR198 ◽  
Author(s):  
Yi Shen ◽  
Jack Dvorkin ◽  
Yunyue Li

Our goal is to accurately estimate attenuation from seismic data using model regularization in the seismic inversion workflow. One way to achieve this goal is by finding an analytical relation linking [Formula: see text] to [Formula: see text]. We derive an approximate closed-form solution relating [Formula: see text] to [Formula: see text] using rock-physics modeling. This relation is tested on well data from a clean clastic gas reservoir, of which the [Formula: see text] values are computed from the log data. Next, we create a 2D synthetic gas-reservoir section populated with [Formula: see text] and [Formula: see text] and generate respective synthetic seismograms. Now, the goal is to invert this synthetic seismic section for [Formula: see text]. If we use standard seismic inversion based solely on seismic data, the inverted attenuation model has low resolution and incorrect positioning, and it is distorted. However, adding our relation between velocity and attenuation, we obtain an attenuation model very close to the original section. This method is tested on a 2D field seismic data set from Gulf of Mexico. The resulting [Formula: see text] model matches the geologic shape of an absorption body interpreted from the seismic section. Using this [Formula: see text] model in seismic migration, we make the seismic events below the high-absorption layer clearly visible, with improved frequency content and coherency of the events.


2017 ◽  
Vol 25 (03) ◽  
pp. 1750022
Author(s):  
Xiuwei Yang ◽  
Peimin Zhu

Acoustic impedance (AI) from seismic inversion can indicate rock properties and can be used, when combined with rock physics, to predict reservoir parameters, such as porosity. Solutions to seismic inversion problem are almost nonunique due to the limited bandwidth of seismic data. Additional constraints from well log data and geology are needed to arrive at a reasonable solution. In this paper, sedimentary facies is used to reduce the uncertainty in inversion and rock physics modeling; the results not only agree with seismic data, but also conform to geology. A reservoir prediction method, which incorporates seismic data, well logs, rock physics and sedimentary facies, is proposed. AI was first derived by constrained sparse spike inversion (CSSI) using a sedimentary facies dependent low-frequency model, and then was transformed to reservoir parameters by sequential simulation, statistical rock physics and [Formula: see text]-model. Two numerical experiments using synthetic model and real data indicated that the sedimentary facies information may help to obtain a more reasonable prediction.


Sign in / Sign up

Export Citation Format

Share Document