First Application of Hybrid Bit Technology to Optimize Drilling Through S Shape Directional Section with High Chert Content in UAE Land Operations

2021 ◽  
Author(s):  
Ygnacio Jesus Nunez ◽  
Munir Bashir ◽  
Fernando Ruiz ◽  
Rakesh Kumar ◽  
Mohamed Sameer ◽  
...  

Abstract This paper highlights the solution, execution, and evaluation of the first 12.25″ application of hybrid bit on rotary steerable system in S-Shape directional application to drill interbedded formations with up to 25 % chert content in UAE land operations. The main challenge that the solution overcame is to drill through the hard chert layers while avoiding trips due to PDC bit damage nor drilling hour's limitation of TCI bit while improving the overall ROP and achieving the directional requirement. The solution package has demonstrated a superior ROP over rollercone bits, as well as improved PDC cutter durability and lower reactive torque leading to better steerability and stability which will be detailed in this paper. A significant contributor to such success was utilizing a new hybrid bit technology which incorporates the dual cutting mechanisms of both polycrystalline Diamond Compact (PDC) and rollercone bits. This allows a more efficient drilling by bringing the durability of the crushing action of rollercone to drill through hard interbedded lithology and the effectiveness of the shearing action of PDC cutters to improve ROP without sacrificing the toughness of the cutting structure edge. The proposed solution in combined with continues proportional rotary steering system managed to drill 4,670 ft through heterogeneous formation with chert nodules, with an average ROP of 38.29 ft\hr improving ROP by 15% and eliminating extra trips of utilizing roller cone bits to be able to drill though the chert nodules and avoid the PDC bit damage. Leading reduction in cost per foot by 35 %. Additionally, the hybrid bit exceed the expectation achieving 878 thousand of revolutions, with effective bearing and with the drilling cutting structure in a very good condition. Furthermore, the directional objectives were met with high quality directional drilling avoiding wellbore tortuosity. Such success was established through application analysis, specific formations drilling roadmaps and optimized drilling parameters in order to improve the overall run efficiency. The combination of roller cone and PDC elements in a hybrid bit designed to deliver better efficiency and torque stability significantly increased performance drilling the section in one single run, proven that heterogeneous formations can be drill.

1993 ◽  
Vol 115 (4) ◽  
pp. 247-256 ◽  
Author(s):  
A. K. Wojtanowicz ◽  
E. Kuru

An analytical development of a new mechanistic drilling model for polycrystalline diamond compact (PDC) bits is presented. The derivation accounts for static balance of forces acting on a single PDC cutter and is based on assumed similarity between bit and cutter. The model is fully explicit with physical meanings given to all constants and functions. Three equations constitute the mathematical model: torque, drilling rate, and bit life. The equations comprise cutter’s geometry, rock properties drilling parameters, and four empirical constants. The constants are used to match the model to a PDC drilling process. Also presented are qualitative and predictive verifications of the model. Qualitative verification shows that the model’s response to drilling process variables is similar to the behavior of full-size PDC bits. However, accuracy of the model’s predictions of PDC bit performance is limited primarily by imprecision of bit-dull evaluation. The verification study is based upon the reported laboratory drilling and field drilling tests as well as field data collected by the authors.


Author(s):  
Abdelsalam N. Abugharara ◽  
John Molgaard ◽  
Charles A. Hurich ◽  
Stephen D. Butt

Abstract This work concentrates on the investigation of enhancing drilling performance through increasing drilling rate of penetration (ROP) by using a passive vibration assisted rotary drilling (pVARD) tool. It also involves analysis of how ROP was significantly increased when drilling using pVARD compared to drilling using conventional system “rigid” using coring and drilling in shale rocks. The apparatus used was a fully instrument laboratory scale rig and the bits were dual-cutter polycrystalline diamond compact (PDC) bit for drilling and diamond impregnated coring bit for coring. The flow rate was constant of (7 litter / min) using clean water at atmospheric pressure. In addition, for accuracy data recording, a data acquisition system (DAQ-Sys) using a LabVIEW software was utilized to record data at 1000HZ sampling rate. The output drilling parameters involved in the analysis included operational rpm, torque (TRQ), and ROP. All the output-drilling parameters were analyzed with relation to downhole dynamic weight on bit (DDWOB). The result of this work explained how pVARD can increase the DDWOB and improve ROP. The result also demonstrated generating a balanced and concentric increase in DDWOB and minimizing the wide-range fluctuation of DDWOB generated in rigid drilling, particularly at high DDWOB.


2021 ◽  
Author(s):  
Lan Ngo Vi ◽  
Wanwarang Khobchit ◽  
Teerawat Teerachotmongkol ◽  
Zayyan Mohammad ◽  
Ali Abbasgholipour ◽  
...  

Abstract This project drilled in Sin Phu Horm field. The main challenge in this field is the formation. The 8.5-in section is designed to drill through the hard and abrasive sandstone formation (known as Nam Phong formation) with unconfined compressive strength (UCS) between 6,000 and 24,000 psi and peak up to 55,000 psi. Multiple bit runs and heavy set of Polycrystalline Diamond Compact (PDC) bits were observed in the offset wells with slow rate of penetration (ROP) and short intervals, which resulted in a high drilling cost. In the offset runs, the average interval was observed between 200 and 300 meters and average on-bottom ROP ranged from 2 to 8 m/hr. Worn cutters were the main dull characteristic in the offset PDC bits and the bits were pulled out of hole due to slow ROP. Due to the challenging formation, the goal was to increase the interval per bit run and ROP which resulted to reduce the number of bit trips and drilling cost. Looking at the dull grading of the offset PDC bits, it was obvious that the slow ROP was caused by the cutters worn by the abrasive and hard Nam Phong formation. The fixed-cutter PDC bits were run in the offset wells and worn cutters were observed in the shoulder area. The worn portion of the cutter occurred only in the exposed side, while the portion in the cutter pocket remained intact. Utilizing the portion in the cutter pocket helps to prolong cutter life, increase the ROP, and bit life longevity. Thus, it can help to reduce undesired bit trips. Based on the worn cutter observation, the new design of the 8.5-in PDC bit equipped with innovative 360 rolling cutter (RC) bit was proposed. A comprehensive vibration simulation drilling parameters roadmap were provided to minimize shock and vibration. Two bits were run with rotary steerable BHA to drill Nam Phong formation in the field. The first bit drilled 431 meters at an average ROP of 6.8 m/hr and the second bit drilled 391 meters at an average ROP of 5.5 m/hr. Two runs using the 360 RC bits drilled 822 meters in total of 1,236 meters entire interval of Nam Phong formation, which was equivalent to 66%, achieving the operator's goal while saving 2.2 days solely from two runs of RC bit. This success increased the operator's confidence to run 360 RC bits in the subsequent wells to reduce the number of bit trips and increase the ROP. This paper will discuss the application and evolution of 360 RC bit, along with the result achieved by the bit fitted equipped with this cutter in Thailand onshore.


Author(s):  
Demeng Che ◽  
Peidong Han ◽  
Ping Guo ◽  
Kornel Ehmann

In Part I of this paper, the issues related to temperature, stress and force were reviewed and parallels were drawn between both metal machining and rock cutting. Part II discusses the issues more directly related to polycrystalline diamond compact (PDC) bit performance and rock mechanics. However, relevant issues in various metal cutting processes will continue to be presented to clarify the gaps and similarities between these two classes of processes.


2020 ◽  
Vol 13 (5) ◽  
pp. 122-131
Author(s):  
Yu Jinping ◽  
◽  
Zou Deyong ◽  
Sun Yuanxiu ◽  
Zhang Yin

Rock breaking is a complex physical process that can be influenced by various factors, such as geometrical shape and cutting angle of rock breaking tools. Experimental study of the rock breaking mechanism of personalized bits is restricted due to long cycle and high cost. This study simulated the rock breaking mechanism of polycrystalline diamond compact (PDC) bit by combining finite element method and experiment. The simulation was performed to shorten the period and reduce the cost of studying the rock breaking mechanism of PDC bits. A rock breaking finite element model for sting cutters of personalized PDC bit was established to simulate the rock breaking process. The crack propagation pattern, dynamic stress of rock breaking, and rock breaking mechanism of sting cutters of personalized PDC bit were analyzed. The correctness of the simulation results was verified through experiments. Results demonstrate that the rock breaking load increases with the crack propagation in the fracture initiation and propagation stages, with the maximum tangential force of 1062.5 N and maximum axial force of 1850.0 N. The load changes in a small range when the crack penetrates the rock, with the tangential force of 125.0–500.0 N and axial force of 375.0–875.0 N. The rock breaking mechanism of the sting cutters of bit is consistent with maximum tensile stress theory. The rock begins to break when the tensile stress of rock is 36.9 MPa. The sting cutters of personalized PDC bit have better wear resistance than the sting cutters of conventional bit. The average wear rates of personalized PDC and conventional bits are 1.74E-4 and 2.1E-4 mm/m, respectively. This study serves as reference for shortening the study period of rock breaking mechanism, efficiently designing personalized PDC bit structure, reducing bit wear, and enhancing rock breaking efficiency.


2021 ◽  
Author(s):  
Guodong David Zhan ◽  
Arturo Magana-Mora ◽  
Eric Moellendick ◽  
John Bomidi ◽  
Xu Huang ◽  
...  

Abstract This study presents a hybrid approach that combines data-driven and physics models for worn and sharp drilling simulation of polycrystalline diamond compact (PDC) bit designs and field learning from limited downhole drilling data, worn state measurements, formation properties, and operating environment. The physics models include a drilling response model for cutting forces, worn or rubbing elements in the bit design. Decades of pressurized drilling and cutting experiments validated these models and constrained the physical behaviour while some coefficients are open for field model learning. This hybrid approach of drilling physics with data learning extends the laboratory results to application in the field. The field learning process included selecting runs in a well for which rock properties model was built. Downhole drilling measurements, known sharp bit design, and measured wear geometry were used for verification. The models derived from this collaborative study resulted in improved worn bit drilling response understanding, and quantitative prediction models, which are foundational frameworks for drilling and economics optimization.


2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Zhaosheng Ji ◽  
Huaizhong Shi ◽  
Xianwei Dai ◽  
Hengyu Song ◽  
Gensheng Li ◽  
...  

Abstract Polycrystalline diamond compact (PDC) bit accounts for the most drilling footage in the development of deep and geothermal resources. The goal of this paper is to investigate the PDC cutter-rock interaction and reveal the rock fragmentation mechanism. A series of loading and unloading tests are conducted to obtain the curves of contact force versus penetration displacement. A single practical PDC cutter is fixed on the designed clamping devices that are mounted on the servo experiment system TAW-1000 in the tests. The craters morphology and quantified data were obtained by scanning the fragmented rock specimen using a three-dimensional morphology scanner. Finally, a numerical model is established to get the stress and deformation fields of the rock under a single PDC cutter. The results show that there are two kinds of failure modes, i.e., brittle failure and plastic failure, in the loading process. Marble is more prone to brittle fracture and has the lowest specific energy, followed by shale and granite. The brittle failure in marble mainly occurs behind the cutter while that happens ahead of the cutter for shale. Curves of contact force versus penetration displacement illustrate that a cutter with a back rake angle of 40 deg has a better penetration result than that with a back rake angle of 30 deg. Enhancing loading speed has a positive effect on brittle fragmentation. The distribution of von Mises stress indicates the initiation point and direction, which has a good agreement with the experiment. The research is of great significance for optimizing the PDC bit design and increasing the rate of penetration.


Author(s):  
M. A. Elsayed

Drillstrings equipped with PDC bits are commonly used to drill for oil, gas and geothermal energy. Drillstring instability — defined as the tendency of self-excited vibrations (chatter) to grow with time — causes failure of PDC bits as well as pipe joints. This problem becomes particularly severe in deep wells and hard rock. Much work has been performed in predicting stability. Bit and drillstring geometry as well as rock type affect stability. In this paper, we propose a scheme to assure stability for a given drillstring regardless of bit geometry, utilizing the desired drilling parameters. The effect of bit geometry and rock type in the classic stability analysis are replaced by the drilling parameters, namely: weight-ob-bit (WOB), rate of penetration (ROP) and speed (RPM). Experimental data obtained at Sandia National Labs, Albuquerque, N.M. is used to verify the assured stability equation. This approach is much simpler that classic stability analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chun-Liang Zhang ◽  
Ying-Xin Yang ◽  
Hai-Tao Ren ◽  
Can Cai ◽  
Yong Liu ◽  
...  

The parallel track scraping principle of conventional PDC bits largely limits the cutting efficiency and working life in deep formations. Cross-cutting polycrystalline diamond compact (PDC) bit may be an efficient drilling tool that increases the rock-breaking efficiency through both cross-cutting and alternate-cutting modes of the PDC cutter. The motion track equation of the cross-cutting PDC bit was derived by using the compound coordinate system, and the motion track was analyzed. Meanwhile, through the unit experiment and discrete element simulation, the cutting force, volume-specific load, and crack propagation were analyzed under different cutting modes. Through establishing a nonlinear dynamic model of the bit-rock system, the speed-up mechanism of the novel bit was analyzed based on rock damage, rock stress state, and motion characteristic of the bit during the rock-breaking process. Compared with unidirectional cutting, cross-cutting produces less cutting force, more brittle fracture, and a greater decrease of formation strength. The novel PDC bit can put more rock elements into a tensile stress condition than a conventional PDC bit, and the plastic energy dissipation ratio of the cross-cutting PDC bit is lower while the damage energy consumption ratio is higher than they are for conventional bits, which is beneficial to increasing the ratio of fracture failure and improving rock-breaking efficiency. Laboratory drilling tests show that the cross-cutting PDC bit can create mesh-like bottom-hole features. Drilling contrast experiments show that a mesh-like bottom-hole pattern can be obtained by using the cross-cutting PDC bit, of which the ROP is obviously higher than that of the conventional bit when drilling in sandstone or limestone formation. Meanwhile, the influence of deviation angle, weight on bit, and rock properties on cutting efficiency of the cross-cutting PDC bit are studied.


2021 ◽  
Author(s):  
Roswall Enrique Bethancourt ◽  
Mohammed Sarhan ◽  
Felix Leonardo Castillo ◽  
Imad Al Hamlawi ◽  
Luis Ramon Baptista ◽  
...  

Abstract Loss of circulation while drilling the surface holes has become the main challenge in the Abu Dhabi Onshore developed fields. Typical consequences of losses are blind drilling and high instability of the wellbore that eventually led to hole collapse, drill string pack-offs and other associated well-integrity risks. Expensive operations including implementing aerated drilling technique, high water consumption and logistical constraints lead to difficulties reaching planned depth and running casing with added complexities of well integrity due to poor cement quality and bonding in the required isolation zones. Casing while drilling (CWD) is becoming a powerful method in mitigating both lost circulation as well as wellbore stability issues. This paper details the first 13 3/8″ × 16″ successful non-directional CWD trial accomplished in Abu Dhabi and the various advantages of the process. The Non-Directional CWD technology is used to drill vertical or tangent profiles with no directional drilling or logging (formation evaluation) requirements. The casing string is run with drillable body polycrystalline diamond cutters (PDC) bit and solid body centralizers are installed into the casing to achieve the required stand-off for cementing purpose. Some of the best practices applied to conventional drilling operations are not valid for CWD. The paper presents the methodology followed by the drilling engineers during the planning and preparation phases and presents a detailed description of the execution at the rig and the results of the evaluation including time savings, cement quality, rate of penetration, bottomhole assembly (BHA) directional tendency and losses comparison among others.The implementation of CWD saved the operator five days. The bit selection and fit-for-purpose bit design were critical factors for the success of the application. The interval was drilled (as planned) in one run through interbedded formations with a competitive rate of penetration (ROP). In this trial the interval consisted of 2,470ft with an average on-bottom ROP of 63.7 ft/hr, zero quality, health, safety and environmental (QHSE) incidents with enhanced safety for the rig crew.The technology eliminated the non-productive time (NPT) associated with tight spots, BHA pack-off, vibrations or stalls which it is an indication of good hole cleaning and optimum drilling parameters.Medium losses (10-15 BBL/hr) were cured due to the plastering and wellbore strengthening effect of CWD allowing drilling to resume with full returns.Well Verticality maintained with 0.3 degrees Inclination at section final depth.The drillable CWD bit was drilled out with a standard 12.25-in PDC bit in 1 hour as per the plan.


Sign in / Sign up

Export Citation Format

Share Document