Experimental Determination of the Biot Elastic Constant: Applications in Formation Evaluation (Sonic Porosity, Rock Strength, Earth Stresses, and Sanding Predictions)

1998 ◽  
Vol 1 (01) ◽  
pp. 57-63 ◽  
Author(s):  
Theodore Klimentos ◽  
Abdallah Harouaka ◽  
Bechir Mtawaa ◽  
Salih Saner

Summary We developed an experimental method to obtain the Biot elastic constant of rocks from laboratory dynamic and static measurements. The Biot constant often has been calculated with various empirical equations. The experimental determination of the Biot elastic constant is very important to engineering problems associated with sand control, hydraulic fracturing, wellbore stability, earth stresses, sonic porosity, and estimation of compressional-, P, and shear-, S, wave velocity. Both the dynamic and static moduli of actual reservoir sandstone core samples, jacketed and mounted in a triaxial cell under vacuum, were measured at various confining and overburden stresses. The results obtained show that the Biot constant is a complex function of porosity, permeability, pore-size distribution, and overburden and confining stress, which means that it is not really a constant. Also, the static Biot constant is greater than the dynamic one and their difference increases with increasing overburden stress according to the equation astatic =[1+0.05*(sz)ef]*adynamic (where sz is in Ksi). Moreover, both the experimental static and dynamic Biot constants may be significantly different from values calculated with empirical equations. This study suggests that quantifying the Biot constant in the laboratory may enhance the determination of rock-strength/fracturing, earth stresses, rock subsidence, sanding predictions, P- and S-wave velocities, porosity, and pore fluid from sonic and seismic data. Introduction The Biot1–7 elastic constant, a, of a rock is an important poroelastic parameter that relates stress and pore pressure and describes how compressible the dry skeletal frame is with respect to the solid material composing the dry skeletal frame of the rock. Biot1 measures the ratio of the fluid volume squeezed out to the volume change of the rock if the latter is compressed while allowing the fluid to escape. It is described as Because the petroleum-related rocks are usually saturated, it is important to know how the saturation and pore pressure affect their mechanical and flow properties. Terzaghi's8 effective-stress principle for soils states that we can obtain the effective stress by simply subtracting the fluid pressure from the total stress; i.e., se=st -ap, which means that a=1. This implies that increasing the external stress by some amount produces the same volume change of the porous material as reducing the pore pressure with the same amount. This principle appears to be valid for most properties of soils. However, in petroleum-related rocks, Terzaghi's effective-stress principle may not be valid. Then, a modified effective stress is a function of the Biot constant, a, and given by sef=st -ap. Despite the great significance of a, only a limited amount of laboratory work on its determination has been reported in the literature.9–13 The failure criteria for a saturated rock with a pore pressure are obtained by introducing the effective stress into the dry form of the failure criteria. This means that all rock failure and sand-production prediction models require a known static Biot constant value. So far, researchers, engineers, and geophysicists quite often assume that a=1 (Terzaghi's principle), which is not necessarily true. Alternatively, for the determination of a, they may use various empirical equations.14–17 These equations, however, yield different values that may vary by up to 100% or more depending on the equation used. The primary objective of this study was to determine the Biot elastic constant experimentally, both by dynamic and static measurements, and to establish a correlation between the dynamic and static a. Another objective was to identify any rock properties controlling the Biot elastic constant. Experimental Determination of the Biot Constant In this experimental method, we determined both the dynamic and static moduli of actual reservoir sandstone core samples under high vacuum (<0.15 mbar) and at various confining (s2=s3=sx) and axial (s1=sx) stresses. The vacuum was obtained and maintained in-situ while the rock sample was mounted and tested with a triaxial system. The rock sample is prepared, jacketed, and mounted in the triaxial cell. Then, the cell is closed firmly to prevent leaks and filled with the confining fluid. Vacuum is then pulled out of the sample with a high-power vacuum pump. Once the desired vacuum condition (<0.15 mbar) is established, a multistage triaxial compression test is performed, as discussed in details elsewhere.18 Axial and confining stresses were applied hydraulically. The dynamic and static data were generated at various axial and confining stresses. At each confining-stress stage, several P and S waveforms were recorded as the axial (overburden) stress was increased. The measured P - and S-wave velocities were used to calculate the dynamic Poisson's ratio and the dynamic Bulk, Shear, and Young's moduli of the dry skeletal frame of the rock, Ksk.

2019 ◽  
Vol 7 (4) ◽  
pp. SH1-SH18
Author(s):  
Guilherme Fernandes Vasquez ◽  
Marcio Jose Morschbacher ◽  
Julio Cesar Ramos Justen

Brazilian presalt reservoirs comprise carbonate rocks saturated with light oil with different amounts of [Formula: see text] and excellent productivity. The occurrence of giant-size accumulations with such productivity generates the interest in production monitoring tools, such as time-lapse seismic. However, time-lapse seismic may present several challenges, such as imaging difficulties, repeatability, and detectability of small variations of reservoir properties. In addition, when assessing time-lapse seismic feasibility, the validity of Gassmann’s modeling for complex, heterogeneous carbonate rocks is arguable. Other questions include the pressure variation effects on the seismic properties of competent rocks. The effective stress is a linear combination of confining stress and pore pressure that governs the behavior of physical properties of rocks. Many applications assume that the effective stress for elastic-wave velocity is given by the difference between confining stress and pore pressure, whereas another common approach uses the Biot-Willis coefficient as a weight applied to the pore pressure to estimate the effective stress. Through a series of experiments involving ultrasonic pulse transmission on saturated core plugs in the laboratory, we verified the applicability of Gassmann’s fluid substitution and estimated the empirical effective stress coefficients related to the P- and S-wave velocities for rock samples from two offshore carbonate reservoirs from the presalt section, Santos Basin. We observed that Gassmann’s equation predicts quite well the effects of fluid replacement, and we found that the effective stress coefficient is less than one and not equal to the Biot-Willis coefficient. Moreover, there is a good agreement between the static and dynamic Biot-Willis coefficient, which is a suggestion that the presalt rocks behave as a poroelastic media. These observations suggest that more accurate time-lapse studies require the estimation of the effective stress coefficient for the particular reservoir of interest.


SPE Journal ◽  
2021 ◽  
pp. 1-21
Author(s):  
Saeed Rafieepour ◽  
Stefan Z. Miska ◽  
Evren M. Ozbayoglu ◽  
Nicholas E. Takach ◽  
Mengjiao Yu ◽  
...  

Summary In this paper, an extensive series of experiments was performed to investigate the evolution of poromechanical (dry, drained, undrained, and unjacketed moduli), transport (permeability), and strength properties during reservoir depletion and injection in a high-porosity sandstone (Castlegate). An overdetermined set of eight poroelastic moduli was measured as a function of confining pressure (Pc) and pore pressure (Pp). The results showed larger effect on pore pressure at low Terzaghi’s effective stress (nonlinear trend) during depletion and injection. Moreover, the rock sample is stiffer during injection than depletion. At the same Pc and Pp, Biot’s coefficient and Skempton’s coefficient are larger in depletion than injection. Under deviatoric loading, absolute permeability decreased by 35% with increasing effective confining stress up to 20.68 MPa. Given these variations in rock properties, modeling of in-situ-stress changes using constant properties could attain erroneous predictions. Moreover, constant deviatoric stress-depletion/injection failure tests showed no changes or infinitesimal variations of strength properties with depletion and injection. It was found that failure of Castlegate sandstone is controlled by simple effective stress, as postulated by Terzaghi. Effective-stress coefficients at failure (effective-stress coefficient for strength) were found to be close to unity (actual numbers, however, were 1.03 for Samples CS-5 and CS-9 and 1.04 for Sample CS-10). Microstructural analysis of Castlegate sandstone using both scanning electron microscope (SEM) and optical microscope revealed that the changes in poroelastic and transport properties as well as the significant hysteresis between depletion and injection are attributed to the existence and distribution of compliant components such as pores, microcracks, and clay minerals.


Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. E43-E51 ◽  
Author(s):  
P. Frempong ◽  
A. Donald ◽  
S. D. Butt

Passing seismic waves generate transient pore-pressure changes that influence the velocity and attenuation characteristics of porous rocks. Compressional ultrasonic wave velocities [Formula: see text] and quality factors [Formula: see text] in a quartz sandstone were measured under cycled pore pressure and uniaxial strain conditions during a laboratory simulated injection and depletion process. The objectives were to study the influence of cyclical loading on the acoustic characteristics of a reservoir sandstone and to evaluate the potential to estimate pore-fluid pressure from acoustic measurements. The values of [Formula: see text] and [Formula: see text] were confirmed to increase with effective stress increase, but it was also observed that [Formula: see text] and [Formula: see text] increased with increasing pore pressure at constant effective stress. The effective stress coefficient [Formula: see text] was found to be less thanone and dependent on the pore pressure, confining stress, and load. At low pore pressures, [Formula: see text] approached one and reduced nonlinearly at high pore pressures. The change in [Formula: see text] and [Formula: see text] with respect to pore pressure was more pronounced at low versus high pore pressures. However, the [Formula: see text] variation with pore pressure followed a three-parameter exponential rise to a maximum limit whereas [Formula: see text] had no clear limit and followed a two-parameter exponential growth. Axial strain measurements during the pore-pressure depletion and injection cycles indicated progressive viscoelastic deformation in the rock. This resulted in an increased influence on [Formula: see text] and [Formula: see text] with increasing pore-pressure cycling. The value [Formula: see text] was more sensitive in responding to the loading cycle and changes in pore pressures than [Formula: see text]; thus, [Formula: see text] may be a better indicator for time-lapse reservoir monitoring than [Formula: see text]. However, under the experimental conditions, [Formula: see text] was unstable and difficult to measure at low effective stress.


1994 ◽  
Vol 50 (3) ◽  
pp. 2093-2099 ◽  
Author(s):  
R. Barberi ◽  
G. Barbero ◽  
M. Giocondo ◽  
R. Moldovan

2007 ◽  
Vol 44 (6) ◽  
pp. 659-672 ◽  
Author(s):  
Jong-Sub Lee ◽  
J Carlos Santamarina

The duration of liquefaction in small models is very short, therefore special monitoring systems are required. In an exploratory sequence of liquefaction tests, S-wave transillumination is implemented with a high repetition rate to provide detailed information on the evolution of shear stiffness during liquefaction. These data are complemented with measurements of acceleration, time-varying settlement, excess pore pressure, and resistivity profiles. Measurements show that excess pore pressure migration from liquefied deep layers may cause or sustain a zero effective stress condition in shallow layers, that multiple liquefaction events may take place in a given formation for a given excitation level, and that unsaturated layers may also reach a zero effective stress condition. The time scale for excess pore pressure dissipation in fully submerged specimens is related to particle resedimentation and pressure diffusion; downward drainage from unsaturated shallow layers may contribute an additional time scale. High resolution resistivity profiling reveals the gradual homogenization of the soil bed that takes place during subsequent liquefaction events. The S-wave transillumination technique can be extended to field applications and implemented with tomographic coverage to gain a comprehensive understanding of the spatial and temporal evolution of liquefaction.Key words: densification, electrical resistivity, multiple liquefaction, pore pressure, shear wave, spatial variability.


2021 ◽  
Author(s):  
Josh Lee

<p><b>Increases in rainfall-induced landsliding following large earthquake are well documented but the time frames over which this heightened hazard persists in the land scape remains poorly understood. Whilst it is well known that the presence of failed and partially slopes after earthquakes significantly reduces the rainfall thresholds required to activate slope movement, their failure susceptibility during specific storms and how this changes through time remains poorly studied. To improve knowledge in this field requires well documented slope failures following earthquakes and a detailed understanding of their potential failure mechanisms when pore pressures are elevated in the slope. The 2016 Mw 7.8 Kaikōura earthquake provides a unique opportunity to study how rainfall events following the earthquake may impact the timing and mechanisms of landslide reactivation. </b></p><p>This study conducted a suite of specialist triaxial cell experiments, designed to replicate varying rainfall scenarios on remoulded samples collected from two sites where numerous earthquake-induced landslides were recorded in similar Late Cretaceous to Neogene sediments with similar physical properties (the Leader Dam Landslides (LDL) and the Limestone Hill landslide (LHL)). In each experiment rainfall events were simulated using a series of different pore pressure scenarios (increases and decreases in mean effective stress) at representative field stress conditions whilst monitoring material deformation behaviour. </p><p>The results demonstrate that both the deformation behaviour and pore pressure required to generate failure were influenced by the previous changes in pore pressure. Samples subjected to stepped increases in pore pressure were subject to greater pre-failure deformation (dilation) and subsequently failed at lower pore pressures (higher mean effective stress) when compared to samples subjected to linear increases in pore pressure. In addition, increases in the rate of pore pressure also increased the amount of pre-failure deformation allowing failure to occur when pore pressures were lower. In contrast a sample subjected to both increases and decreases in pore pressure underwent pre-failure densification and subsequently required a larger increase in pore pressure to fail. The results demonstrate that landslide reactivation is influenced by a number of factors including the amount and rate of previous changes in pore pressure and the slope drainage history. </p><p>The results provide new insights into why landslide susceptibility may remain elevated for prolonged periods of time (e.g. decades) in the landscape as well as why the rainfall thresholds for site specific failures during storms may be difficult to predict. </p>


AAPG Bulletin ◽  
2021 ◽  
Vol 105 (2) ◽  
pp. 309-328
Author(s):  
Garri Gaus ◽  
Reinhard Fink ◽  
Alexandra Amann-Hildenbrand ◽  
Bernhard M. Krooss ◽  
Ralf Littke

Sign in / Sign up

Export Citation Format

Share Document