Experimental efforts to access 4D feasibility and interpretation issues of Brazilian presalt carbonate reservoirs

2019 ◽  
Vol 7 (4) ◽  
pp. SH1-SH18
Author(s):  
Guilherme Fernandes Vasquez ◽  
Marcio Jose Morschbacher ◽  
Julio Cesar Ramos Justen

Brazilian presalt reservoirs comprise carbonate rocks saturated with light oil with different amounts of [Formula: see text] and excellent productivity. The occurrence of giant-size accumulations with such productivity generates the interest in production monitoring tools, such as time-lapse seismic. However, time-lapse seismic may present several challenges, such as imaging difficulties, repeatability, and detectability of small variations of reservoir properties. In addition, when assessing time-lapse seismic feasibility, the validity of Gassmann’s modeling for complex, heterogeneous carbonate rocks is arguable. Other questions include the pressure variation effects on the seismic properties of competent rocks. The effective stress is a linear combination of confining stress and pore pressure that governs the behavior of physical properties of rocks. Many applications assume that the effective stress for elastic-wave velocity is given by the difference between confining stress and pore pressure, whereas another common approach uses the Biot-Willis coefficient as a weight applied to the pore pressure to estimate the effective stress. Through a series of experiments involving ultrasonic pulse transmission on saturated core plugs in the laboratory, we verified the applicability of Gassmann’s fluid substitution and estimated the empirical effective stress coefficients related to the P- and S-wave velocities for rock samples from two offshore carbonate reservoirs from the presalt section, Santos Basin. We observed that Gassmann’s equation predicts quite well the effects of fluid replacement, and we found that the effective stress coefficient is less than one and not equal to the Biot-Willis coefficient. Moreover, there is a good agreement between the static and dynamic Biot-Willis coefficient, which is a suggestion that the presalt rocks behave as a poroelastic media. These observations suggest that more accurate time-lapse studies require the estimation of the effective stress coefficient for the particular reservoir of interest.

1998 ◽  
Vol 1 (01) ◽  
pp. 57-63 ◽  
Author(s):  
Theodore Klimentos ◽  
Abdallah Harouaka ◽  
Bechir Mtawaa ◽  
Salih Saner

Summary We developed an experimental method to obtain the Biot elastic constant of rocks from laboratory dynamic and static measurements. The Biot constant often has been calculated with various empirical equations. The experimental determination of the Biot elastic constant is very important to engineering problems associated with sand control, hydraulic fracturing, wellbore stability, earth stresses, sonic porosity, and estimation of compressional-, P, and shear-, S, wave velocity. Both the dynamic and static moduli of actual reservoir sandstone core samples, jacketed and mounted in a triaxial cell under vacuum, were measured at various confining and overburden stresses. The results obtained show that the Biot constant is a complex function of porosity, permeability, pore-size distribution, and overburden and confining stress, which means that it is not really a constant. Also, the static Biot constant is greater than the dynamic one and their difference increases with increasing overburden stress according to the equation astatic =[1+0.05*(sz)ef]*adynamic (where sz is in Ksi). Moreover, both the experimental static and dynamic Biot constants may be significantly different from values calculated with empirical equations. This study suggests that quantifying the Biot constant in the laboratory may enhance the determination of rock-strength/fracturing, earth stresses, rock subsidence, sanding predictions, P- and S-wave velocities, porosity, and pore fluid from sonic and seismic data. Introduction The Biot1–7 elastic constant, a, of a rock is an important poroelastic parameter that relates stress and pore pressure and describes how compressible the dry skeletal frame is with respect to the solid material composing the dry skeletal frame of the rock. Biot1 measures the ratio of the fluid volume squeezed out to the volume change of the rock if the latter is compressed while allowing the fluid to escape. It is described as Because the petroleum-related rocks are usually saturated, it is important to know how the saturation and pore pressure affect their mechanical and flow properties. Terzaghi's8 effective-stress principle for soils states that we can obtain the effective stress by simply subtracting the fluid pressure from the total stress; i.e., se=st -ap, which means that a=1. This implies that increasing the external stress by some amount produces the same volume change of the porous material as reducing the pore pressure with the same amount. This principle appears to be valid for most properties of soils. However, in petroleum-related rocks, Terzaghi's effective-stress principle may not be valid. Then, a modified effective stress is a function of the Biot constant, a, and given by sef=st -ap. Despite the great significance of a, only a limited amount of laboratory work on its determination has been reported in the literature.9–13 The failure criteria for a saturated rock with a pore pressure are obtained by introducing the effective stress into the dry form of the failure criteria. This means that all rock failure and sand-production prediction models require a known static Biot constant value. So far, researchers, engineers, and geophysicists quite often assume that a=1 (Terzaghi's principle), which is not necessarily true. Alternatively, for the determination of a, they may use various empirical equations.14–17 These equations, however, yield different values that may vary by up to 100% or more depending on the equation used. The primary objective of this study was to determine the Biot elastic constant experimentally, both by dynamic and static measurements, and to establish a correlation between the dynamic and static a. Another objective was to identify any rock properties controlling the Biot elastic constant. Experimental Determination of the Biot Constant In this experimental method, we determined both the dynamic and static moduli of actual reservoir sandstone core samples under high vacuum (<0.15 mbar) and at various confining (s2=s3=sx) and axial (s1=sx) stresses. The vacuum was obtained and maintained in-situ while the rock sample was mounted and tested with a triaxial system. The rock sample is prepared, jacketed, and mounted in the triaxial cell. Then, the cell is closed firmly to prevent leaks and filled with the confining fluid. Vacuum is then pulled out of the sample with a high-power vacuum pump. Once the desired vacuum condition (<0.15 mbar) is established, a multistage triaxial compression test is performed, as discussed in details elsewhere.18 Axial and confining stresses were applied hydraulically. The dynamic and static data were generated at various axial and confining stresses. At each confining-stress stage, several P and S waveforms were recorded as the axial (overburden) stress was increased. The measured P - and S-wave velocities were used to calculate the dynamic Poisson's ratio and the dynamic Bulk, Shear, and Young's moduli of the dry skeletal frame of the rock, Ksk.


2019 ◽  
Vol 38 (5) ◽  
pp. 374-378
Author(s):  
Jeremy Gallop

Calculating velocities in shales in thermal production settings is important to refine time-lapse reservoir characterization from seismic. The effective stress concept is attractive to potentially reduce the amount of expensive core calibration data required. We propose a formulation for thermal effective stress in shales based on the idea of balancing undrained pore pressure increments from thermal expansion with an increase in the matrix stress to minimize pore deformation. This formulation is motivated by a desire to simplify forward modeling, reduce the number of dimensions that must be experimentally calibrated through core testing, and to leverage existing velocity-stress relations for thermal applications. The concept was tested on data from a well-known set of experiments consisting of two North Sea Kimmeridge shale core samples, which displayed a linear dependence of velocity on pressure and temperature. These data were found to be consistent with the proposed thermal effective stress model with a constant effective stress coefficient when considering elastic changes but do not prove that the concept is universally valid. Thermal effective stress coefficients were calculated for P- and S-wave velocities from the data and were found to lie from 0.66 to 1.22, demonstrating reasonable scaling for the proposed model.


Author(s):  
M.A. Tugarova

The article considers the secondary transformations of carbonate rocks of oil and gas complexes, which are of fundamental importance in the formation of reservoir properties. For the first time, a schematic diagram, illustrating the regularities of secondary processes in carbonate reservoirs and their relationship with the physico-chemical conditions of the stratosphere is proposed.


SPE Journal ◽  
2021 ◽  
pp. 1-21
Author(s):  
Saeed Rafieepour ◽  
Stefan Z. Miska ◽  
Evren M. Ozbayoglu ◽  
Nicholas E. Takach ◽  
Mengjiao Yu ◽  
...  

Summary In this paper, an extensive series of experiments was performed to investigate the evolution of poromechanical (dry, drained, undrained, and unjacketed moduli), transport (permeability), and strength properties during reservoir depletion and injection in a high-porosity sandstone (Castlegate). An overdetermined set of eight poroelastic moduli was measured as a function of confining pressure (Pc) and pore pressure (Pp). The results showed larger effect on pore pressure at low Terzaghi’s effective stress (nonlinear trend) during depletion and injection. Moreover, the rock sample is stiffer during injection than depletion. At the same Pc and Pp, Biot’s coefficient and Skempton’s coefficient are larger in depletion than injection. Under deviatoric loading, absolute permeability decreased by 35% with increasing effective confining stress up to 20.68 MPa. Given these variations in rock properties, modeling of in-situ-stress changes using constant properties could attain erroneous predictions. Moreover, constant deviatoric stress-depletion/injection failure tests showed no changes or infinitesimal variations of strength properties with depletion and injection. It was found that failure of Castlegate sandstone is controlled by simple effective stress, as postulated by Terzaghi. Effective-stress coefficients at failure (effective-stress coefficient for strength) were found to be close to unity (actual numbers, however, were 1.03 for Samples CS-5 and CS-9 and 1.04 for Sample CS-10). Microstructural analysis of Castlegate sandstone using both scanning electron microscope (SEM) and optical microscope revealed that the changes in poroelastic and transport properties as well as the significant hysteresis between depletion and injection are attributed to the existence and distribution of compliant components such as pores, microcracks, and clay minerals.


Geophysics ◽  
2017 ◽  
Vol 82 (4) ◽  
pp. D235-D249 ◽  
Author(s):  
Yaneng Zhou ◽  
Saeid Nikoosokhan ◽  
Terry Engelder

The Marcellus Formation, a Devonian gas shale in the Appalachian Basin, is a heterogeneous rock as the result of a complex depositional, diagenetic, and deformational history. Although it is overpressured over a large portion of its economic area, the origin and distribution of pore pressure within the gas shale are not well-understood. We have used the sonic properties of the Marcellus and statistical analyses to tackle this problem. The sonic data come from a suite of 53 wells including a calibration well in the Appalachian Basin. We first analyze the influence of various extrinsic and intrinsic parameters on sonic velocities with univariate regression analyses. The sonic velocities of the Marcellus in the calibration well generally decrease with an increase in gamma-ray american petroleum institute (API) and increase with density and effective stress. Basin-wide median sonic velocities generally decrease with an increase in median gamma-ray API and pore pressure and increase with burial depth (equivalent confining stress), effective stress, and median density. Abnormal pore pressure is verified by a stronger correlation between the median sonic properties and effective stress using an effective stress coefficient of approximately 0.7 relative to the correlation between the median sonic properties and depth. The relatively small effective stress coefficient may be related to the fact that natural gas, a “soft” fluid, is responsible for a basin-wide overpressure of the Marcellus. Following the univariate regression analyses, we adopt a multiple linear regression model to predict the median sonic velocities in the Marcellus based on median gamma-ray intensity, median density, thickness of the Marcellus, confining pressure, and an inferred pore pressure. Finally, we predict the pore pressure in the Marcellus based on median sonic velocities, median gamma-ray intensity, median density, thickness of the Marcellus, and confining pressure.


Geophysics ◽  
2012 ◽  
Vol 77 (2) ◽  
pp. L1-L11 ◽  
Author(s):  
M. Monzurul Alam ◽  
Ida Lykke Fabricius ◽  
Helle Foged Christensen

Deformation of a hydrocarbon reservoir can ideally be used to estimate the effective stress acting on it. The effective stress in the subsurface is the difference between the stress due to the weight of the sediment and a fraction (effective stress coefficient) of the pore pressure. The effective stress coefficient is thus relevant for studying reservoir deformation and for evaluating 4D seismic for the correct pore pressure prediction. The static effective stress coefficient [Formula: see text] is estimated from mechanical tests and is highly relevant for effective stress prediction because it is directly related to mechanical strain in the elastic stress regime. The corresponding dynamic effective stress coefficient [Formula: see text] is easy to estimate from density and velocity of acoustic (elastic) waves. We studied [Formula: see text] and [Formula: see text] of chalk from the reservoir zone of the Valhall field, North Sea, and found that [Formula: see text] and [Formula: see text] vary with differential stress (overburden stress-pore pressure). For Valhall reservoir chalk with 40% porosity, [Formula: see text] ranges between 0.98 and 0.85 and decreases by 10% if the differential stress is increased by 25 MPa. In contrast, for chalk with 15% porosity from the same reservoir, [Formula: see text] ranges between 0.85 and 0.70 and decreases by 5% due to a similar increase in differential stress. Our data indicate that [Formula: see text] measured from sonic velocity data falls in the same range as for [Formula: see text], and that [Formula: see text] is always below unity. Stress-dependent behavior of [Formula: see text] is similar (decrease with increasing differential stress) to that of [Formula: see text] during elastic deformation caused by pore pressure buildup, for example, during waterflooding. By contrast, during the increase in differential stress, as in the case of pore pressure depletion due to production, [Formula: see text] increases with stress while [Formula: see text] decreases.


Geophysics ◽  
2004 ◽  
Vol 69 (4) ◽  
pp. 885-897 ◽  
Author(s):  
Evgenii A. Kozlov

Effects of external stress and pore pressure variations on the seismic signature of fractured rocks remain of interest to geoscientists and practicing geophysicists. Commonly, the effects are modeled theoretically, assuming fracture faces to be rough surfaces contacting each other via the surface asperities. The model proposed here differs from other models of this kind in that (1) fracture roughness is described by a single parameter and (2) a controlled degree of hydraulic connectivity between fractures and equant pores is introduced. This adds to the model's convenience and makes it applicable to a wide variety of reservoirs. The model predictions of seismic velocities in fractured rock at variable stress are consistent with experimental data. For fixed effective stress, the model predictions coincide with those obtained using the model with ellipsoidal fractures of certain average aspect ratio and the same fracture porosity. Apart from known effects, the model introduced predicts an amplification of the stress variation influence on fracturing‐induced anisotropy with an increase of connected equant porosity, a decrease of VP/VS with effective stress, and implicit frequency dependence of the VP/VS relation. It is also shown that amplitude versus offset (AVO) anomalies caused by fluid replacement can be seriously distorted if the fluid replacement is accompanied by significant variations of pore pressure, as, for example, at intense gas production. Neglecting these effects can lead to erroneous conclusions on shear modulus dependence on the pore fluid type. Qualitatively, in rocks with azimuthally aligned fracturing, the increase of effective stress affects AVO gradient in about the same way as the increase of water saturation parameter Vw. In contrast, the AVO intercept is not affected by variations of effective stress, while fluid replacement effect on the intercept is significant. Potentially, this can help distinguish the effects of pore pressure variations and fluid replacement on the AVO attributes.


Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. E43-E51 ◽  
Author(s):  
P. Frempong ◽  
A. Donald ◽  
S. D. Butt

Passing seismic waves generate transient pore-pressure changes that influence the velocity and attenuation characteristics of porous rocks. Compressional ultrasonic wave velocities [Formula: see text] and quality factors [Formula: see text] in a quartz sandstone were measured under cycled pore pressure and uniaxial strain conditions during a laboratory simulated injection and depletion process. The objectives were to study the influence of cyclical loading on the acoustic characteristics of a reservoir sandstone and to evaluate the potential to estimate pore-fluid pressure from acoustic measurements. The values of [Formula: see text] and [Formula: see text] were confirmed to increase with effective stress increase, but it was also observed that [Formula: see text] and [Formula: see text] increased with increasing pore pressure at constant effective stress. The effective stress coefficient [Formula: see text] was found to be less thanone and dependent on the pore pressure, confining stress, and load. At low pore pressures, [Formula: see text] approached one and reduced nonlinearly at high pore pressures. The change in [Formula: see text] and [Formula: see text] with respect to pore pressure was more pronounced at low versus high pore pressures. However, the [Formula: see text] variation with pore pressure followed a three-parameter exponential rise to a maximum limit whereas [Formula: see text] had no clear limit and followed a two-parameter exponential growth. Axial strain measurements during the pore-pressure depletion and injection cycles indicated progressive viscoelastic deformation in the rock. This resulted in an increased influence on [Formula: see text] and [Formula: see text] with increasing pore-pressure cycling. The value [Formula: see text] was more sensitive in responding to the loading cycle and changes in pore pressures than [Formula: see text]; thus, [Formula: see text] may be a better indicator for time-lapse reservoir monitoring than [Formula: see text]. However, under the experimental conditions, [Formula: see text] was unstable and difficult to measure at low effective stress.


2020 ◽  
Author(s):  
Hanneke Paulssen ◽  
Wen Zhou

<p>Between 2013 and 2017, the Groningen gas field was monitored by several deployments of an array of geophones in a deep borehole at reservoir level (3 km). Zhou & Paulssen (2017) showed that the P- and S-velocity structure of the reservoir could be retrieved from noise interferometry by cross-correlation. Here we show that deconvolution interferometry of high-frequency train signals from a nearby railroad not only allows determination of the velocity structure with higher accuracy, but also enables time-lapse measurements. We found that the travel times within the reservoir decrease by a few tens of microseconds for two 5-month periods. The observed travel time decreases are associated to velocity increases caused by compaction of the reservoir. However, the uncertainties are relatively large. <br>Striking is the large P-wave travel time anomaly (-0.8 ms) during a distinct period of time (17 Jul - 2 Sep 2015). It is only observed for inter-geophone paths that cross the gas-water contact (GWC) of the reservoir. The anomaly started 4 days after drilling into the reservoir of a new well at 4.5 km distance and ended 4 days after the drilling operations stopped. We did not find an associated S-wave travel time anomaly. This suggests that the anomaly is caused by a temporary elevation of the GWC (water replacing gas) of approximately 20 m. We suggest that the GWC is elevated due to pore-pressure variations during drilling. The 4-day delay corresponds to a pore-pressure diffusivity of ~5m<sup>2</sup>/s, which is in good agreement with the value found from material parameters and the diffusivity of (induced) seismicity for various regions in the world. </p>


Sign in / Sign up

Export Citation Format

Share Document