The effect of pore pressure depletion and injection cycles on ultrasonic velocity and quality factor in a quartz sandstone

Geophysics ◽  
2007 ◽  
Vol 72 (2) ◽  
pp. E43-E51 ◽  
Author(s):  
P. Frempong ◽  
A. Donald ◽  
S. D. Butt

Passing seismic waves generate transient pore-pressure changes that influence the velocity and attenuation characteristics of porous rocks. Compressional ultrasonic wave velocities [Formula: see text] and quality factors [Formula: see text] in a quartz sandstone were measured under cycled pore pressure and uniaxial strain conditions during a laboratory simulated injection and depletion process. The objectives were to study the influence of cyclical loading on the acoustic characteristics of a reservoir sandstone and to evaluate the potential to estimate pore-fluid pressure from acoustic measurements. The values of [Formula: see text] and [Formula: see text] were confirmed to increase with effective stress increase, but it was also observed that [Formula: see text] and [Formula: see text] increased with increasing pore pressure at constant effective stress. The effective stress coefficient [Formula: see text] was found to be less thanone and dependent on the pore pressure, confining stress, and load. At low pore pressures, [Formula: see text] approached one and reduced nonlinearly at high pore pressures. The change in [Formula: see text] and [Formula: see text] with respect to pore pressure was more pronounced at low versus high pore pressures. However, the [Formula: see text] variation with pore pressure followed a three-parameter exponential rise to a maximum limit whereas [Formula: see text] had no clear limit and followed a two-parameter exponential growth. Axial strain measurements during the pore-pressure depletion and injection cycles indicated progressive viscoelastic deformation in the rock. This resulted in an increased influence on [Formula: see text] and [Formula: see text] with increasing pore-pressure cycling. The value [Formula: see text] was more sensitive in responding to the loading cycle and changes in pore pressures than [Formula: see text]; thus, [Formula: see text] may be a better indicator for time-lapse reservoir monitoring than [Formula: see text]. However, under the experimental conditions, [Formula: see text] was unstable and difficult to measure at low effective stress.

SPE Journal ◽  
2021 ◽  
pp. 1-21
Author(s):  
Saeed Rafieepour ◽  
Stefan Z. Miska ◽  
Evren M. Ozbayoglu ◽  
Nicholas E. Takach ◽  
Mengjiao Yu ◽  
...  

Summary In this paper, an extensive series of experiments was performed to investigate the evolution of poromechanical (dry, drained, undrained, and unjacketed moduli), transport (permeability), and strength properties during reservoir depletion and injection in a high-porosity sandstone (Castlegate). An overdetermined set of eight poroelastic moduli was measured as a function of confining pressure (Pc) and pore pressure (Pp). The results showed larger effect on pore pressure at low Terzaghi’s effective stress (nonlinear trend) during depletion and injection. Moreover, the rock sample is stiffer during injection than depletion. At the same Pc and Pp, Biot’s coefficient and Skempton’s coefficient are larger in depletion than injection. Under deviatoric loading, absolute permeability decreased by 35% with increasing effective confining stress up to 20.68 MPa. Given these variations in rock properties, modeling of in-situ-stress changes using constant properties could attain erroneous predictions. Moreover, constant deviatoric stress-depletion/injection failure tests showed no changes or infinitesimal variations of strength properties with depletion and injection. It was found that failure of Castlegate sandstone is controlled by simple effective stress, as postulated by Terzaghi. Effective-stress coefficients at failure (effective-stress coefficient for strength) were found to be close to unity (actual numbers, however, were 1.03 for Samples CS-5 and CS-9 and 1.04 for Sample CS-10). Microstructural analysis of Castlegate sandstone using both scanning electron microscope (SEM) and optical microscope revealed that the changes in poroelastic and transport properties as well as the significant hysteresis between depletion and injection are attributed to the existence and distribution of compliant components such as pores, microcracks, and clay minerals.


Geophysics ◽  
1986 ◽  
Vol 51 (4) ◽  
pp. 948-956 ◽  
Author(s):  
Douglas H. Green ◽  
Herbert F. Wang

The pore pressure response of saturated porous rock subjected to undrained compression at low effective stresses are investigated theoretically and experimentally. This behavior is quantified by the undrained pore pressure buildup coefficient, [Formula: see text] where [Formula: see text] is fluid pressure, [Formula: see text] is confining pressure, and [Formula: see text] is the mass of fluid per unit bulk volume. The measured values for B for three sandstones and a dolomite arc near 1.0 at zero effective stress and decrease with increasing effective stress. In one sandstone, B is 0.62 at 13 MPa effective stress. These results agree with the theories of Gassmann (1951) and Bishop (1966), which assume a locally homogeneous solid framework. The decrease of B with increasing effective stress is probably related to crack closure and to high‐compressibility materials within the rock framework. The more general theories of Biot (1955) and Brown and Korringa (1975) introduce an additional parameter, the unjacketed pore compressibility, which can be determined from induced pore pressure results. Values of B close to 1 imply that under appropriate conditions within the crust, zones of low effective pressure characterized by low seismic wave velocity and high wave attenuation could exist. Also, in confined aquifer‐reservoir systems at very low effective stress states, the calculated specific storage coefficient is an order of magnitude larger than if less overpressured conditions prevailed.


1998 ◽  
Vol 1 (01) ◽  
pp. 57-63 ◽  
Author(s):  
Theodore Klimentos ◽  
Abdallah Harouaka ◽  
Bechir Mtawaa ◽  
Salih Saner

Summary We developed an experimental method to obtain the Biot elastic constant of rocks from laboratory dynamic and static measurements. The Biot constant often has been calculated with various empirical equations. The experimental determination of the Biot elastic constant is very important to engineering problems associated with sand control, hydraulic fracturing, wellbore stability, earth stresses, sonic porosity, and estimation of compressional-, P, and shear-, S, wave velocity. Both the dynamic and static moduli of actual reservoir sandstone core samples, jacketed and mounted in a triaxial cell under vacuum, were measured at various confining and overburden stresses. The results obtained show that the Biot constant is a complex function of porosity, permeability, pore-size distribution, and overburden and confining stress, which means that it is not really a constant. Also, the static Biot constant is greater than the dynamic one and their difference increases with increasing overburden stress according to the equation astatic =[1+0.05*(sz)ef]*adynamic (where sz is in Ksi). Moreover, both the experimental static and dynamic Biot constants may be significantly different from values calculated with empirical equations. This study suggests that quantifying the Biot constant in the laboratory may enhance the determination of rock-strength/fracturing, earth stresses, rock subsidence, sanding predictions, P- and S-wave velocities, porosity, and pore fluid from sonic and seismic data. Introduction The Biot1–7 elastic constant, a, of a rock is an important poroelastic parameter that relates stress and pore pressure and describes how compressible the dry skeletal frame is with respect to the solid material composing the dry skeletal frame of the rock. Biot1 measures the ratio of the fluid volume squeezed out to the volume change of the rock if the latter is compressed while allowing the fluid to escape. It is described as Because the petroleum-related rocks are usually saturated, it is important to know how the saturation and pore pressure affect their mechanical and flow properties. Terzaghi's8 effective-stress principle for soils states that we can obtain the effective stress by simply subtracting the fluid pressure from the total stress; i.e., se=st -ap, which means that a=1. This implies that increasing the external stress by some amount produces the same volume change of the porous material as reducing the pore pressure with the same amount. This principle appears to be valid for most properties of soils. However, in petroleum-related rocks, Terzaghi's effective-stress principle may not be valid. Then, a modified effective stress is a function of the Biot constant, a, and given by sef=st -ap. Despite the great significance of a, only a limited amount of laboratory work on its determination has been reported in the literature.9–13 The failure criteria for a saturated rock with a pore pressure are obtained by introducing the effective stress into the dry form of the failure criteria. This means that all rock failure and sand-production prediction models require a known static Biot constant value. So far, researchers, engineers, and geophysicists quite often assume that a=1 (Terzaghi's principle), which is not necessarily true. Alternatively, for the determination of a, they may use various empirical equations.14–17 These equations, however, yield different values that may vary by up to 100% or more depending on the equation used. The primary objective of this study was to determine the Biot elastic constant experimentally, both by dynamic and static measurements, and to establish a correlation between the dynamic and static a. Another objective was to identify any rock properties controlling the Biot elastic constant. Experimental Determination of the Biot Constant In this experimental method, we determined both the dynamic and static moduli of actual reservoir sandstone core samples under high vacuum (<0.15 mbar) and at various confining (s2=s3=sx) and axial (s1=sx) stresses. The vacuum was obtained and maintained in-situ while the rock sample was mounted and tested with a triaxial system. The rock sample is prepared, jacketed, and mounted in the triaxial cell. Then, the cell is closed firmly to prevent leaks and filled with the confining fluid. Vacuum is then pulled out of the sample with a high-power vacuum pump. Once the desired vacuum condition (<0.15 mbar) is established, a multistage triaxial compression test is performed, as discussed in details elsewhere.18 Axial and confining stresses were applied hydraulically. The dynamic and static data were generated at various axial and confining stresses. At each confining-stress stage, several P and S waveforms were recorded as the axial (overburden) stress was increased. The measured P - and S-wave velocities were used to calculate the dynamic Poisson's ratio and the dynamic Bulk, Shear, and Young's moduli of the dry skeletal frame of the rock, Ksk.


2021 ◽  
Author(s):  
Josh Lee

<p><b>Increases in rainfall-induced landsliding following large earthquake are well documented but the time frames over which this heightened hazard persists in the land scape remains poorly understood. Whilst it is well known that the presence of failed and partially slopes after earthquakes significantly reduces the rainfall thresholds required to activate slope movement, their failure susceptibility during specific storms and how this changes through time remains poorly studied. To improve knowledge in this field requires well documented slope failures following earthquakes and a detailed understanding of their potential failure mechanisms when pore pressures are elevated in the slope. The 2016 Mw 7.8 Kaikōura earthquake provides a unique opportunity to study how rainfall events following the earthquake may impact the timing and mechanisms of landslide reactivation. </b></p><p>This study conducted a suite of specialist triaxial cell experiments, designed to replicate varying rainfall scenarios on remoulded samples collected from two sites where numerous earthquake-induced landslides were recorded in similar Late Cretaceous to Neogene sediments with similar physical properties (the Leader Dam Landslides (LDL) and the Limestone Hill landslide (LHL)). In each experiment rainfall events were simulated using a series of different pore pressure scenarios (increases and decreases in mean effective stress) at representative field stress conditions whilst monitoring material deformation behaviour. </p><p>The results demonstrate that both the deformation behaviour and pore pressure required to generate failure were influenced by the previous changes in pore pressure. Samples subjected to stepped increases in pore pressure were subject to greater pre-failure deformation (dilation) and subsequently failed at lower pore pressures (higher mean effective stress) when compared to samples subjected to linear increases in pore pressure. In addition, increases in the rate of pore pressure also increased the amount of pre-failure deformation allowing failure to occur when pore pressures were lower. In contrast a sample subjected to both increases and decreases in pore pressure underwent pre-failure densification and subsequently required a larger increase in pore pressure to fail. The results demonstrate that landslide reactivation is influenced by a number of factors including the amount and rate of previous changes in pore pressure and the slope drainage history. </p><p>The results provide new insights into why landslide susceptibility may remain elevated for prolonged periods of time (e.g. decades) in the landscape as well as why the rainfall thresholds for site specific failures during storms may be difficult to predict. </p>


Author(s):  
Hao Chen ◽  
Jinhai Zheng ◽  
Qianzhen Li ◽  
Naiyu Zhang ◽  
Hanyi Chen ◽  
...  

As the unexpected wave-induced seabed instability may cause foundation failure, the evaluation of wave-induced pore pressure and effective stress in seabed plays an important role in the design of the foundation of marine structures. In this study, a two-dimensional integrated mathematical model, based on COBRAS wave model and SWANDYNE seabed model is developed to numerically investigate the mechanism of wave-induced seabed response in the vicinity of a permeable submerged breakwaters. Numerical results indicate that this model has a great ability in predicting the dynamic response of the pore pressure and effective stress around the breakwater. Both the pore fluid pressure and effective stress in seabed largely changes with an increasing water depth. It is also found that the responses of the pore pressure and effective stress of different locations to the dynamic wave loading are significantly different in the cases with variable top width of the breakwater.


2021 ◽  
Author(s):  
Josh Lee

<p><b>Increases in rainfall-induced landsliding following large earthquake are well documented but the time frames over which this heightened hazard persists in the land scape remains poorly understood. Whilst it is well known that the presence of failed and partially slopes after earthquakes significantly reduces the rainfall thresholds required to activate slope movement, their failure susceptibility during specific storms and how this changes through time remains poorly studied. To improve knowledge in this field requires well documented slope failures following earthquakes and a detailed understanding of their potential failure mechanisms when pore pressures are elevated in the slope. The 2016 Mw 7.8 Kaikōura earthquake provides a unique opportunity to study how rainfall events following the earthquake may impact the timing and mechanisms of landslide reactivation. </b></p><p>This study conducted a suite of specialist triaxial cell experiments, designed to replicate varying rainfall scenarios on remoulded samples collected from two sites where numerous earthquake-induced landslides were recorded in similar Late Cretaceous to Neogene sediments with similar physical properties (the Leader Dam Landslides (LDL) and the Limestone Hill landslide (LHL)). In each experiment rainfall events were simulated using a series of different pore pressure scenarios (increases and decreases in mean effective stress) at representative field stress conditions whilst monitoring material deformation behaviour. </p><p>The results demonstrate that both the deformation behaviour and pore pressure required to generate failure were influenced by the previous changes in pore pressure. Samples subjected to stepped increases in pore pressure were subject to greater pre-failure deformation (dilation) and subsequently failed at lower pore pressures (higher mean effective stress) when compared to samples subjected to linear increases in pore pressure. In addition, increases in the rate of pore pressure also increased the amount of pre-failure deformation allowing failure to occur when pore pressures were lower. In contrast a sample subjected to both increases and decreases in pore pressure underwent pre-failure densification and subsequently required a larger increase in pore pressure to fail. The results demonstrate that landslide reactivation is influenced by a number of factors including the amount and rate of previous changes in pore pressure and the slope drainage history. </p><p>The results provide new insights into why landslide susceptibility may remain elevated for prolonged periods of time (e.g. decades) in the landscape as well as why the rainfall thresholds for site specific failures during storms may be difficult to predict. </p>


Author(s):  
Jiang Tao Yi ◽  
Fook Hou Lee ◽  
Siang Huat Goh ◽  
Yu Ping Li ◽  
Xi Ying Zhang

The numerical modeling of spudcan penetration involves technical challenges posed by large soil deformation coupled with significant material non-linearity. The Lagrangian approach commonly used for solid stress analysis often does not work well with large deformations, resulting in premature termination of the analysis. Recently, the Arbitrary Langrangian Eulerian (ALE) and the Eulerian methods have been used in spudcan analysis to overcome problems caused by the soil flow and large deformation. However, most of the reported studies are based on total stress analysis and therefore shed no light on the excess pore pressures generated during spudcan installation. As a result, much remains unknown about the long-term behaviour of spudcans in the ground, which is affected by the dissipation of excess pore pressures. This paper reports an effective-stress finite element analysis of spudcan installation in an over-consolidated (OC) soft clay. The Eulerian analysis was conducted using ABAQUS/ Explicit, with the effective stress constitutive models coded via the material subroutine VUMAT. The results demonstrated the feasibility of conducting effective-stress finite element analysis for undrained spudcan penetration in OC clays. The paper discusses the flow mechanism, stable cavity depths and bearing capacity factors when spudcan installation occurs in various OC soils. It was found that the pore pressure build-up concentrates in a bulb-shaped zone surrounding the spudcan. The size of the pore pressure bulb increases with increasing penetration. The maximum excess pore pressure, which is generated near the spudcan tip, is predominantly controlled by the undrained shear strength at the tip level.


2022 ◽  
Author(s):  
Yang Liu ◽  
Tong Zhang ◽  
Yankun Ma ◽  
Shuaibing Song ◽  
Ming Tang ◽  
...  

Abstract The permeability and mechanical behavior in sandy mudstone are crucial to the hazard prevention and safety mining. In this study, to investigate the evolution and characteristic of permeability and mechanical properties of mudstone during the in-site loading process, triaxial compression-seepage experiments were performed. The increase of permeability and decrease of mechanical strength gradually evaluated to the decrease of permeability and increase of mechanical strength subjected to the increase of confining stress from 5 to 15 MPa, which corresponds to the transformation from brittleness to ductility of mudstone, and the transformation threshold of 10 MPa confining stress was determined. The shear fractures across the sample at brittle regime, while shear fracture does not cross the sample or even be not generated at semibrittle and ductile state. The dynamic decrease, slight decrease, and residual response were determined in axial strain, and the divided zone increases with the increase of confining stress. The relatively higher permeability corresponds to the higher pore pressure as the increase of confining stress. The volumetric strain increases as the increase of confining stress, compared to that decrease correspond to the increase of the pore pressure, and the higher volumetric strain and the lower permeability. In addition, an improved permeability model was developed to describe the loading-based permeability behavior considering the Klinkenberg effect.


2012 ◽  
Vol 76 (8) ◽  
pp. 3115-3129 ◽  
Author(s):  
R. J. Cuss ◽  
J. F. Harrington ◽  
C. C. Graham ◽  
S. Sathar ◽  
A. E. Milodowski

AbstractThe concept of effective stress is one of the basic tenets of rock mechanics where the stress acting on a rock can be viewed as the total stress minus the pore water pressure. In many materials, including clay-rich rocks, this relationship has been seen to be imperfect and a coefficient (χ) is added to account for the mechanical properties of the clay matrix. Recent experimental results during the flow testing (both gas and water) of several rocks (Callovo-Oxfordian claystone, Opalinus Clay, Boom Clay) and geomaterials (bentonite, kaolinite) has given evidence for stable high pressure differentials. The design of the experiments allows multiple measurements of pore pressure, which commonly shows a complex distribution for several different experimental geometries. The observed stable high pressure differentials and heterogeneous pore pressure distribution makes the describing of stress states in terms of effective stress complex. Highly localized pore pressures can be sustained by argillaceous materials and concepts of evenly distributed pore pressures throughout the sample (i.e. conventional effective stress) do not fit many clay-rich rocks if the complexities observed on the micro-scale are not incorporated, especially when considering the case of gas flow.


Sign in / Sign up

Export Citation Format

Share Document