Reduction of Drill String Torque and Casing Wear in Extended Reach Wells Using Non-Rotating Drill Pipe Protectors

Author(s):  
N.B. Moore ◽  
P.W. Mock ◽  
R.E. Krueger
Keyword(s):  
1975 ◽  
Vol 97 (2) ◽  
pp. 464-471 ◽  
Author(s):  
W. B. Bradley

With the trend toward deeper objectives, the time spent drilling through casing has increased with a consequent increase in casing wear. As a result of the expanded importance of casing wear, a research program was undertaken to investigate means to predict the rate of casing wear and means to reduce this wear rate. This paper presents experimental results on the effectiveness of drill pipe rubbers in reducing rotational casing wear and measurements of the rate of casing wear by rotating tool joints and drill pipe rubbers under simulated drilling conditions. The results from this paper and the results from reference [1] have been used to develop techniques for predicting casing wear under field conditions. These techniques are reported in reference [2].


2021 ◽  
Vol 66 (05) ◽  
pp. 192-195
Author(s):  
Rövşən Azər oğlu İsmayılov ◽  

The aricle is about the pipe stick problems of deep well drilling. Pipe stick problem is one of the drilling problems. There are two types of pipe stick problems exist. One of them is differential pressure pipe sticking. Another one of them is mechanical pipe sticking. There are a lot of reasons for pipe stick problems. Indigators of differential pressure sticking are increase in torque and drug forces, inability to reciprocate drill string and uninterrupted drilling fluid circulation. Key words: pipe stick, mecanical pipe stick,difference of pressure, drill pipe, drilling mud, bottomhole pressure, formation pressure


2021 ◽  
Vol 261 ◽  
pp. 02021
Author(s):  
Xiaoyong Yang ◽  
Shichun Chen ◽  
Qiang Feng ◽  
Wenhua Zhang ◽  
Yue Wang

With the increasing intensity of oil and gas field exploration and development, oil and gas wells are also drilling into deeper and more complex formations. Conventional steel drilling tools can no longer meet the requirements of ultra-deep, high-temperature and high-pressure wells. The paper first analyzes the advantages of titanium alloy drill pipe based on basic performance of titanium alloy drill pipe. The experimental results show that the basic properties of titanium alloy drill pipes meet the operating standards of the petroleum industry. Then the buckling performance of titanium alloy drill pipe and steel drill pipe is compared, the calculation results show that the buckling performance of titanium alloy drill tools is slightly lower than that of steel drill tools. Secondly, the maximum allowable buildup rate of titanium alloy drill pipe and steel drill tool is studied. The research shows that under the same condition of the drill pipe outer diameter, titanium alloy drill pipe can be used for a smaller curvature radius and greater buildup rate. This advantage of titanium alloy drill pipe makes it more suitable for short radius and ultra-short radius wells. Finally, taking a shale gas horizontal well as an example, with the goal of reducing drill string friction and ensuring drill string stability, a comparative study on the application of titanium alloy drill pipe and steel drill pipe is carried out. The results show that titanium alloy drill pipe has a wider application in the field, and is suitable for operations under various complex working conditions.


2012 ◽  
Vol 577 ◽  
pp. 127-131 ◽  
Author(s):  
Peng Wang ◽  
Tie Yan ◽  
Xue Liang Bi ◽  
Shi Hui Sun

Fatigue damage in the rotating drill pipe in the horizontal well of mining engineering is usually resulted from cyclic bending stresses caused by the rotation of the pipe especially when it is passing through curved sections or horizontal sections. This paper studies fatigue life prediction method of rotating drill pipe which is considering initial crack in horizontal well of mining engineering. Forman fatigue life prediction model which considering stress ratio is used to predict drill string fatigue life and the corresponding software has been written. The program can be used to calculate the stress of down hole assembly, can predict stress and alternating load in the process of rotating-on bottom. Therefore, establishing buckling string fatigue life prediction model with cracks can be a good reference to both operation and monitor of the drill pipe for mining engineering.


1977 ◽  
Vol 99 (1) ◽  
pp. 215-223 ◽  
Author(s):  
W. B. Bradley

Procedures are presented for estimating the amount of casing wear produced in wells by the rotation of tool joints, drill pipe, and drill pipe protectors against casing. The procedures are based upon experimental information and limited field measurements developed over a period of several years [1–5]. The procedures have been used with moderate success in predicting the casing wear rates seen in the field for a limited number of cases. The paper again emphasizes that with the proper use of drill pipe protectors casing wear can be minimized. In addition, the paper presents suggested procedures for selecting drill pipe protectors to assure consistent casing wear performance.


1977 ◽  
Vol 99 (1) ◽  
pp. 199-207
Author(s):  
W. B. Bradley

Previous tests [1] have shown drill pipe protectors are of value in reducing casing wear, particularly at high contact loads. However, the brand of protectors tested could not withstand high contact loads without slipping on the drill pipe and tearing apart. As a result, further tests were conducted to find a protector which can withstand high contact loads without slipping or failing and still minimize casing wear. Results from the present tests show that drill pipe protectors can be made to operate at high contact loads without failure, grip the drill pipe without slipping, and maintain a low rate of casing wear. In addition, the test results indicate that drill pipe protector quality control needs to be improved.


2013 ◽  
Vol 845 ◽  
pp. 81-85
Author(s):  
D. Sujan ◽  
C.W. Nguong ◽  
S.N.B. Lee ◽  
Mesfin G. Zewge

This paper attempts to explain the motion behaviour of the marine riser coupled to a drill string when the vortex induced vibration (VIV) is involved. Vibrations have been reported to have a major effect on the drilling performance, affecting the rate of penetration (ROP), causing severe damages to the drilling tools and also reduces the efficiency of the drilling process. There are two major components of drilling tools that are subjected to vibration, namely the marine riser and the drilling string. Analysis of vibration in the marine riser and drill string are two topical areas that have individually received considerable attention by researchers in the past. Though these two subjects are interrelated, borne by the fact that the marine riser encapsulates and protects the drill pipe, there have been few attempts to investigate them together as a unity. Due to the complexities of the models, simplified assumptions were made in order to undertake the investigation by using staggered approach. The results were compared with the experimental and simulation data from the open literature. It was found that the maximum displacement with negative damping occurs at low frequency and rotation speed.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Aniket Kumar ◽  
Joseph Nwachukwu ◽  
Robello Samuel

The increasing complexities of wellbore geometry imply an increasing potential of damage resulting from the casing-wear downhole. Much work has been done to quantify and estimate wear in casing; however, the results of such predictions have been mixed. While the locations of critical-wear areas along the casing string have been predicted fairly accurately, quantifying the actual amount of casing wear has been a magnitude off. A mathematical model that describes this casing wear in terms of the total wellbore energy has been developed and used to estimate the depth of the wear groove and the wear volume downhole. The wellbore energy provides a mathematical criterion to quantify the borehole quality and incorporates the parameters, borehole curvature, and the wellbore torsion. The casing wear observed downhole is also an integral function of these two parameters. Hence, a combined “wear-energy” model has been proposed to estimate the casing wear in curved sections of the wellbore that have the drill string lying on its low side. The fundamental assumption of this model is that the volume worn away from the casing wall is proportional to the work done by friction on its inner wall by the tool joints only. It also assumes that the primary mechanism for casing wear is the rotation of the drill string, and the wear caused during tripping is insignificant. The borehole torsion models of wellbore trajectory, namely spatial-arc, natural-curve, cylindrical-helix, and constant-tool face, have been incorporated separately to enhance the accuracy of estimating the wear volume downhole. The wear-energy model for a detailed analysis of a practical example using real-time well survey data will be presented. Wear zones along the wellbore have been identified using a mathematical criterion of the “contact zone parameter.” The wear-groove depths for each contact zone along with an equivalent average wear for the curved section of the wellbore have been estimated. The wear volumes predicted by the various curvature and torsion models of wellbore energy have been graphically studied. The wellbore torsion has been found to significantly impact the casing-wear downhole.


Author(s):  
Mehdi Hajianmaleki ◽  
Jeremy S. Daily ◽  
Lev Ring ◽  
Raju Gandikota

Understanding drill string buckling behavior is a significant challenge to the petroleum industry. In this paper, the explicit finite element method implemented in Abaqus software is employed to study the buckling of drill strings for inclined straight wellbores. Classic solutions for the critical buckling length of self-weighted columns as well as critical buckling load for drill pipe inside inclined wellbores are compared to explicit FEA and accurate results are provided by the finite element based predictions. The effect of different inclination angles and string effective weight due to the buoyancy effect has been studied and the results for sinusoidal and helical buckling are compared to analytical results and experimental data in the literature. The theoretical predictions for different inclination angles agree with the simulations. Theoretical buckling load of inclined drill strings approaches zero by decreasing the effective weight of a floating drill string. However, the results of finite element simulations show that significant buckling load would still exist for very low drill string effective weight. These results are confirmed by experimental results provided by other researchers. Overall, the efficacy of using explicit finite element methods to model drill string buckling behavior is demonstrated.


2011 ◽  
Vol 291-294 ◽  
pp. 1578-1581
Author(s):  
Ben Fu Yu ◽  
Xiang Zhen Yan ◽  
Xiu Juan Yang ◽  
Gen Sheng Li

The dynamic mechanics model was built up to analyze the contact-impact between drill string and wellbore according to the characteristics of contact-impact, based on non-linear finite element method and Lagrange method. The dynamic mechanics equations were deduced by the dynamic mechanics model. The stress and deformation field of drill string with different parameters of bottom hole were obtained and tested by experiments and numerical simulation respectively. And also, the propagation laws of stress wave generated by contact-impact in drill pipe were studied. The comprehensive results indicate that the numerical results agree well with the actual dynamic process of contact-impact. The stress waves generated by contact-impact cause the change of stress. The contact-impact between drill string and wellbore under air drilling is the main reason for early drill string failure.


Sign in / Sign up

Export Citation Format

Share Document