Successful Water Shutoff in a High-Temperature, High-Volume Producer - A Case History from the Ula Field, Offshore Norway

1997 ◽  
Author(s):  
J. Bergem ◽  
R.J. Fulleylove ◽  
J.C. Morgan ◽  
D.G. Stevens ◽  
J.A. Dahl ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1145
Author(s):  
Wei Li ◽  
Sen Han ◽  
Xiaokang Fu ◽  
Ke Huang

The aims of this paper are to prepare disintegrated high volume crumb rubber asphalt (DHVRA) with low viscosity, good workability and low-temperature performance by adding disintegrating agent (DA) in the preparation process, and to further analyze the disintegrating mechanism and evaluated high-temperature and low-temperature rheological properties. To obtain DHVRA with excellent comprehensive performance, the optimum DA dosage was determined. Based on long-term disintegrating tests and the Fluorescence Microscopy (FM) method, the correlations between key indexes and crumb rubber (CR) particle diameter was analyzed, and the evaluation indicator and disintegrating stage division standard were put forward. Furthermore, Fourier transform infrared spectroscopy (FT-IR) and Gel Permeation Chromatography (GPC) was used to reveal the reaction mechanism, and the contact angle test method was adopted to evaluate the surface free energy (SFE). In addition, the high-temperature and low-temperature rheological properties were measured, and the optimum CR content was proposed. Results indicated that the optimum DA dosage was 7.5‰, and the addition of DA promoted the melt decomposition of CR, reduced the viscosity and improved the storage stability. The 135 °C rotational viscosity (RV) of DHVRA from mixing for 3 h could be reduced to 1.475 Pa·s, and the softening point difference was even less than 2 °C. The linear correlation between 135 °C RV and the diameter of CR particle in rubber asphalt system was as high as 0.968, and the viscosity decay rate (VDR) was used as the standard to divide the disintegrating process into a fast disintegrating stage, stable disintegrating stage and slight disintegrating stage. Compared to common rubber asphalt (CRA), DHVRA has an absorption peak at 960 cm−1 caused by trans olefin = C-H, and higher molecular weight and polar component of surface energy. Compared with CRA, although the high-temperature performance of DHVRA decreases slightly, the low-temperature relaxation ability can be greatly improved.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000123-000128
Author(s):  
Erick M. Spory

There is an ever-increasing demand for electronics in higher temperature applications, both in variety and volume. In many cases, the actual integrated circuit within the plastic packaging can support operation at higher temperatures, although the packaging and connectivity is unable to do so. Ultimately, there still remains a significant gap in the volume demand required for high temperature integrated circuit lines to justify support of more expensive ceramic solutions by the original component manufacturer vs. the cheaper, high-volume PEM flows. Global Circuit Innovations, Inc. has developed a manufacturable, cost-effective solution to extract the integrated circuit from any plastic encapsulated device and subsequently re-package that device into an identical ceramic footprint, with the ability to maintain high-integrity connectivity to the device and enabling functionality for 1000's of hours at temperatures at 250C and beyond. This process represents a high-value added solution to provide high-temperature integrated circuits for a large spectrum of requirements: low-volume, quick-turn evaluation of integrated circuit prototyping, as well as medium to high-volume production needs for ongoing production needs. Although both die extraction and integrated circuit pad electroless nickel/gold plating have both been performed successfully for many years in the semiconductor industry, Global Circuit Innovations, Inc. has been able to combine the two in a reliable, volume manufacturing flow to satisfy many of the stringent requirements for high-temperature applications.


Author(s):  
Dave Dewees

The cost and complexity of design method validation at the component level makes actual and comprehensive benchmark cases challenging to obtain. This is especially true of elevated temperature design methods where component and material response is complicated by time-dependent creep and possibly creep-fatigue behavior. To support current Design-by-Analysis modernization development within Section I of the ASME Boiler & Pressure Vessel Code, service examples that are comprehensive enough to allow method validation, while still being tractable in complexity have been identified. To this end, the case history of a Grade 11 high temperature steam outlet header that was retired after 23 of years of service is presented. Detailed damage and deformation information is available which allows validation of creep material models, as well as future evaluation of candidate elevated temperature design method performance.


Sign in / Sign up

Export Citation Format

Share Document