Grade 11 High Temperature Steam Header Case History and Benchmark

Author(s):  
Dave Dewees

The cost and complexity of design method validation at the component level makes actual and comprehensive benchmark cases challenging to obtain. This is especially true of elevated temperature design methods where component and material response is complicated by time-dependent creep and possibly creep-fatigue behavior. To support current Design-by-Analysis modernization development within Section I of the ASME Boiler & Pressure Vessel Code, service examples that are comprehensive enough to allow method validation, while still being tractable in complexity have been identified. To this end, the case history of a Grade 11 high temperature steam outlet header that was retired after 23 of years of service is presented. Detailed damage and deformation information is available which allows validation of creep material models, as well as future evaluation of candidate elevated temperature design method performance.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4548
Author(s):  
Gyeong-Hoi Koo ◽  
Ji-Hyun Yoon

In this paper, the inelastic material models for Type 316H stainless steel, which is one of the principal candidate materials for elevated temperature design of the advanced high temperature reactors (HTRs) pressure retained components, are investigated and the required material parameters are identified to be used for both elasto-plastic models and unified viscoplastic models. In the constitutive equations of the inelastic material models, the kinematic hardening behavior is expressed with the Chaboche model with three backstresses, and the isotropic hardening behavior is expressed by the Voce model. The required number of material parameters is minimized to be ten in total. For the unified viscoplastic model, which can express both the time-independent plastic behavior and the time-dependent viscous behavior, the constitutive equations have the same kinematic and isotropic hardening parameters of the elasto-plastic material model with two additional viscous parameters. To identify the material parameters required for these constitutive equations, various uniaxial tests were carried out at isothermal conditions at room temperature and an elevated temperature range of 425–650 °C. The identified inelastic material parameters were validated through the comparison between tests and calculations.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Hyeong-Yeon Lee ◽  
Min-Gu Won ◽  
Nam-Su Huh

An integrated software platform of high-temperature design evaluation and defect assessment for a nuclear component and piping system subjected to high-temperature operation in creep regime has been developed. The program, called “HITEP_RCC-MRx,” is based on French nuclear grade high-temperature design code of RCC-MRx and enables a designer to conduct not only elevated temperature design evaluation but also elevated temperature defect assessment. HITEP_RCC-MRx consists of three modules: “HITEP_RCC-DBA,” which is programmed for the design-by-analysis (DBA) evaluation for class 1 pressure boundary components such as the pressure vessel and heat exchangers according to the RB-3200 procedures; “HITEP_RCC-PIPE,” which is programmed for the design-by-rule (DBR) evaluation according to the RB-3600 procedures; and “HITEP_RCC-A16,” which is programmed for high-temperature defect assessment according to the A16 procedures. The program has been verified with a number of related example problems on modules of DBA, Pipe, and A16. It was shown from the verification examples that integrated software platform of HITEP_RCC-MRx is capable of conducting three functions of an elevated temperature design evaluation for pressure boundary components and for piping, and an elevated defect assessment in an efficient and reliable way.


Author(s):  
David J. Dewees ◽  
Benjamin F. Hantz

A recent high temperature steam header case study is extended here to include alternate methods of review, including elastic stress and isochronous strain analysis and accompanying limits. The previous creep analysis was formulated to be exactly consistent with the allowable stress basis, such that alternate design analysis methods and criteria could be rigorously compared. In the current work, the selection of the appropriate limits for elastic results is investigated, as discussed in previous literature, which is motivated by stress redistribution characteristics of the primary (and secondary) loading in a typical header. Next, use of isochronous stress-strain curves generated from the same consistent (Omega) creep model are used for analysis and compared to candidate strain limits. The analyses show that both elastic and isochronous analysis have potential for effective creep design in the context of current high temperature design modernization activities. Finally, multiaxial creep behavior and its effect on detailed creep, elastic and isochronous stress-strain analyses and corresponding limits is also introduced.


Author(s):  
Michael Swindeman ◽  
T.-L. Sham ◽  
Robert I. Jetter

Software is being developed to aid assessment procedures of components under specified loading conditions in accordance with the elevated temperature design requirements for Class A components in ASME Boiler and Pressure Vessel Code, Section III, Rules for Construction of Nuclear Facility Components, Division 5, High Temperature Reactors, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this program is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all of the features and permitted materials of HBB. This paper focuses on a description of the overall program, particular challenges in developing numerical procedures for the assessment, and an overall description of the approach to computer program development.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Alloy Digest ◽  
1964 ◽  
Vol 13 (6) ◽  

Abstract UDIMET 41 is a vacuum induction melted precipitation hardening nickel-base alloy having outstanding room and elevated temperature properties. It possesses excellent corrosion and oxidation resistance. It is designed for highly stressed components operating in the 1400-1700 deg F temperature range. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep. It also includes information on low and high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-92. Producer or source: Special Metals Inc..


Alloy Digest ◽  
1998 ◽  
Vol 47 (12) ◽  

Abstract MO-RE 40MA is a fully austenitic heat-resistant alloy for elevated temperature applications. The alloy is microalloyed for creep strength and oxidation resistance. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance. Filing Code: Ni-548. Producer or source: Duraloy Technologies Inc.


Alloy Digest ◽  
1987 ◽  
Vol 36 (12) ◽  

Abstract UHB QRO 80 MICRODIZED is a chromium-molybdenum-vanadium tool steel with improved performance for tooling used at elevated temperature as in forging, extrusion and die casting. It is electro-slag refined. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-486. Producer or source: Uddeholm Aktiebolag.


Sign in / Sign up

Export Citation Format

Share Document