Simulation of Hydraulic Fracturing Processes

1980 ◽  
Vol 20 (06) ◽  
pp. 487-500 ◽  
Author(s):  
A. Settari

Abstract A mathematical model of the fracturing process, coupling the fracture mechanics and fracture propagation with reservoir flow and heat transfer, has been formulated. The model is applicable to fracturing treatments as well as to high leakoff applications such as fractured waterfloods and thermal fractures. The numerical technique developed is capable of simulating fracture extension for reasonably coarse grids, with truncation error being minimized for high leakoff applications when the grid next to the fracture is approximately square. With the aid of the model, a generalization of Carter's propagation formula has been developed that is also valid for high fluid-loss conditions. The capabilities of the model are illustrated by examples of heat transfer and massive-hydraulic-fracturing (MHF) treatment calculation. Introduction Induced fracturing of reservoir rock occurs under many different circumstances. Controlled hydraulic fracturing is an established method for increasing productivity of wells in low-permeability reservoirs. The technology of fracturing and the earlier design methods are reviewed by Howard and Fast.1 In waterflooding, injection pressures also often exceed fracturing pressures. This may result from poor operational practices, but it also could be intended to increase injectivity.2 In heavy oils, such as Alberta oil sands, most in-situ thermal recovery techniques rely on creating injectivity by fracturing the formation with steam.3 Fracturing also is being used as a method for deterining in-situ stresses4 and for establishing communication between wells for extraction of geothermal energy.5,6 Finally, fractures may be produced by explosive treatment or induced thermal stresses (such as in radioactive waste disposal). To date, most of the research has been directed toward the understanding and design of fracture stimulation treatments, with emphasis on predicting fracture geometry.7–11 The influence of fluid flow and heat transfer in the reservoir has been neglected or accounted for by various approximations in these methods. On the other hand, the need for reservoir engineering analysis of fractured wells led to the development of analytical techniques and numerical models for predicting postfracture performance.1 A common feature of all these methods is that they treat only stationary fractures, which therefore must be computed using some of the methods of the first category mentioned earlier. With the high costs associated with MHF,17–19 and with increasing complexity of the treatments, it is becoming important to be able to understand the interaction of the physical mechanisms involved and to improve the designs. This paper presents a numerical model of the fracturing process that simultaneously accounts for the rock mechanics, two-phase fluid flow, and heat transfer, both in the fracture and in the reservoir. The model is capable of predicting fracture propagation, fluid leakoff and heat transfer, fracture closure, cleanup, and postfracture performance. Although the detailed calculations of geometry, proppant transport, etc., have not been included, they can be integrated in a natural way within the present model. Because vertical fractures are prevalent except for very shallow depths, the discussion is limited to vertical fracturing. The paper focuses attention on the formulation of the basic model and the numerical techniques in general. Applications to fracturing treatments and the specific enhancements of the model are described in a more recent paper.20

1982 ◽  
Vol 22 (03) ◽  
pp. 321-332 ◽  
Author(s):  
M.E. Hanson ◽  
G.D. Anderson ◽  
R.J. Shaffer ◽  
L.D. Thorson

Abstract We are conducting a U.S. DOE-funded research program aimed at understanding the hydraulic fracturing process, especially those phenomena and parameters that strongly affect or control fracture geometry. Our theoretical and experimental studies consistently confirm the well-known fact that in-situ stress has a primary effect on fracture geometry, and that fractures propagate perpendicular to the least principal stress. In addition, we find that frictional interfaces in reservoirs can affect fracturing. We also have quantified some effects on fracture geometry caused by frictional slippage along interfaces. We found that variation of friction along an interface can result in abrupt steps in the fracture path. These effects have been seen in the mineback of emplaced fractures and are demonstrated both theoretically and in the laboratory. Further experiments and calculations indicate possible control of fracture height by vertical change in horizontal stresses. Preliminary results from an analysis of fluid flow in small apertures are discussed also. Introduction Hydraulic fracturing and massive hydraulic fracturing (MHF) are the primary candidates for stimulating production from tight gas reservoirs. MHF can provide large drainage surfaces to produce gas from the low- permeability formation if the fracture surfaces remain in the productive parts of the reservoir. To determine whether it is possibleto contain these fractures in the productive formations andto design the treatment to accomplish this requires a much broader knowledge of the hydraulic fracturing process. Identification of the parameters controlling fracture geometry and the application of this information in designing and performing the hydraulic stimulation treatment is a principal technical problem. Additionally, current measurement technology may not be adequate to provide the required data. and new techniques may have to be devised. Lawrence Livermore Natl. Laboratory has been conducting a DOE-funded research program whose ultimate goal is to develop models that predict created hydraulic fracture geometry within the reservoir. Our approach has been to analyze the phenomenology of the fracturing process to son out and identify those parameters influencing hydraulic fracture geometry. Subsequent model development will incorporate this information. Current theoretical and stimulation design models are based primarily on conservation of mass and provide little insight into the fracturing process. Fracture geometry is implied in the application of these models. Additionally, pressure and flow initiation in the fractures and their interjection with the fracturing process is not predicted adequately with these models. We have reported previously on some rock-mechanics aspects of the fracturing process. For example, we have studied, theoretically and experimentally, pressurized fracture propagation in the neighborhood of material interfaces. Results of interface studies showed that natural fractures in the interfacial region negate any barrier effect when the fracture is propagating from a lower modulus material toward a higher modulus material. On the other hand, some fracture containment could occur when the fracture is propagating from a higher modulus into a lower modulus material. Effect of moduli changes on the in-situ stress field have to be taken into consideration to evaluate fracture containment by material interfaces. Some preliminary analyses have been performed to evaluate how stress changes when material properties change, but we have not evaluated this problem fully. SPEJ P. 321^


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 428
Author(s):  
Yunzhong Jia ◽  
Zhaohui Lu ◽  
Hong Liu ◽  
Jiehao Wang ◽  
Yugang Cheng ◽  
...  

Non-aqueous or gaseous stimulants are alternative working fluids to water for hydraulic fracturing in shale reservoirs, which offer advantages including conserving water, avoiding clay swelling and decreasing formation damage. Hence, it is crucial to understand fluid-driven fracture propagation and morphology in shale formations. In this research, we conduct fracturing experiments on shale samples with water, liquid carbon dioxide, and supercritical carbon dioxide to explore the effect of fluid characteristics and in situ stress on fracture propagation and morphology. Moreover, a numerical model that couples rock property heterogeneity, micro-scale damage and fluid flow was built to compare with experimental observations. Our results indicate that the competing roles between fluid viscosity and in situ stress determine fluid-driven fracture propagation and morphology during the fracturing process. From the macroscopic aspect, fluid-driven fractures propagate to the direction of maximum horizontal stress direction. From the microscopic aspect, low viscosity fluid easily penetrates into pore throats and creates branches and secondary fractures, which may deflect the main fracture and eventually form the fracture networks. Our results provide a new understanding of fluid-driven fracture propagation, which is beneficial to fracturing fluid selection and fracturing strategy optimization for shale gas hydraulic fracturing operations.


2015 ◽  
Vol 9 (3) ◽  
pp. 242 ◽  
Author(s):  
Efstathios Kaloudis ◽  
Dimitris Siachos ◽  
Konstantinos Stefanos Nikas

Sign in / Sign up

Export Citation Format

Share Document