Improvements in Downhole Equipment for Fluid Injection and Hydraulic Fracturing Monitoring using Associated Induced Seismicity

Author(s):  
J.-P. Deflandre ◽  
S. Vidal-Gilbert ◽  
C. Wittrisch
Author(s):  
Huw Clarke ◽  
James P. Verdon ◽  
Tom Kettlety ◽  
Alan F. Baird ◽  
J‐Michael Kendall

ABSTRACTEarthquakes induced by subsurface fluid injection pose a significant issue across a range of industries. Debate continues as to the most effective methods to mitigate the resulting seismic hazard. Observations of induced seismicity indicate that the rate of seismicity scales with the injection volume and that events follow the Gutenberg–Richter distribution. These two inferences permit us to populate statistical models of the seismicity and extrapolate them to make forecasts of the expected event magnitudes as injection continues. Here, we describe a shale gas site where this approach was used in real time to make operational decisions during hydraulic fracturing operations.Microseismic observations revealed the intersection between hydraulic fracturing and a pre‐existing fault or fracture network that became seismically active. Although “red light” events, requiring a pause to the injection program, occurred on several occasions, the observed event magnitudes fell within expected levels based on the extrapolated statistical models, and the levels of seismicity remained within acceptable limits as defined by the regulator. To date, induced seismicity has typically been regulated using retroactive traffic light schemes. This study shows that the use of high‐quality microseismic observations to populate statistical models that forecast expected event magnitudes can provide a more effective approach.


SPE Journal ◽  
2019 ◽  
Vol 25 (02) ◽  
pp. 692-711 ◽  
Author(s):  
Fengshou Zhang ◽  
Zirui Yin ◽  
Zhaowei Chen ◽  
Shawn Maxwell ◽  
Lianyang Zhang ◽  
...  

Summary This paper presents a case study of fault reactivation and induced seismicity during multistage hydraulic fracturing in Sichuan Basin, China. The field microseismicity data delineate a fault activated near the toe of the horizontal well. The spatio-temporal characteristics of the microseismicity indicate that the seismic activity on the fault during the first three stages is directly related to the fluid injection, while after Stage 3, the seismic activity is possibly due to the relaxation of the fault. The fault-related events have larger magnitudes and different frequency-magnitude characteristics compared to the fracturing-related events. Three-dimensional (3D) fully coupled distinct element geomechanical modeling for the first two hydraulic fracturing stages and a shut-in stage between them is performed. The modeling result generates features of microseismicity similar to that of the field data. The energy budget analysis indicates that the aseismic deformation consumes a major part of the energy. The simulated fault shear displacement is also consistent with the casing deformation measured in the field. The model is also used to investigate the impact of possible operational changes on expected seismic responses. The results show that lower injection rate and lower fluid viscosity would be helpful in reducing casing deformation but not in mitigating seismicity. Decreasing the total fluid injection volume is an effective way to mitigate the seismicity, but it may hinder the stimulation of the reservoir formation and the production of the well.


2021 ◽  
Author(s):  
Adam Klinger ◽  
Joanna Holmgren ◽  
Max Werner

<div> <p>Source parameters can help constrain the causes and mechanics of induced earthquakes. In particular, systematic variations of stress drops of fluid-injection induced seismicity have been interpreted in terms of the role of fluids, differences between tectonic and induced events, and self-similarity. The empirical basis for the variations, however, remains controversial. Here, we test three hypotheses about stress drops with observations of seismicity induced by hydraulic fracturing in the Horn River basin (Canada). First, stress drop is self-similar and independent of magnitude. Second, stress drop increases with distance from the point of fluid injection, which might be expected if in-situ effective stresses increase away from the point of fluid injection. Third, stress drops estimated with empirical Green’s functions (EGFs) are systematically larger than those estimated from direct fits to source models, which is expected if seismic waves attenuate in a frequency-dependent manner or experience site effects.</p> </div><div> <p>We probe the hypotheses with a large microseismic dataset collected during hydraulic fracturing operations in the Horn River shale gas play in British Columbia. 90,000+ seismic events were recorded by three borehole geophone arrays with a moment magnitude range of -3 < M<sub>w </sub>< 0.5. To calculate corner frequencies, we assume small, co-located seismic events can be approximated as EGFs, which effectively remove propagation and site effects from a larger target event. We target 34 M<sub>w</sub> > 0 events and search for EGFs over a 100 m radius for each event, choosing only those EGFs that satisfy multiple quality criteria. This study builds on previous work that estimated stress drops from direct fitting of standard Brune source models and found systematic high frequency resonances recorded by the geophones.</p> </div><div> <p>Of the 34 target events, we retrieve corner frequency and stress drop estimates for 22 events to test the three hypotheses. We observe that stress drop appears relatively constant over M<sub>w </sub>, but the magnitude range (0 < M<sub>w </sub>< 0.5) is currently too limited to draw strong conclusions. Second, stress drop appears to decrease, rather than increase, with distance from the point of injection (with a moderate Pearson’s correlation co-efficient of -0.5 ± 0.2); this could be caused by a direct hydraulic connection causing a reduction of in-situ effective normal stresses distal to the point of injection. Third, we observe no systematic difference between stress drops from direct source fits and EGF-based estimates, although stress drop uncertainties are large compared to standard earthquake source studies because of limited azimuthal coverage and high-frequency instrument resonances. These initial results do not support the systematic variations of stress drop for fluid-injection induced seismicity that have been observed in other datasets.</p> </div>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arno Zang ◽  
Günter Zimmermann ◽  
Hannes Hofmann ◽  
Peter Niemz ◽  
Kwang Yeom Kim ◽  
...  

AbstractThe ability to control induced seismicity in energy technologies such as geothermal heat and shale gas is an important factor in improving the safety and reducing the seismic hazard of reservoirs. As fracture propagation can be unavoidable during energy extraction, we propose a new approach that optimises the radiated seismicity and hydraulic energy during fluid injection by using cyclic- and pulse-pumping schemes. We use data from laboratory-, mine-, and field-scale injection experiments performed in granitic rock and observe that both the seismic energy and the permeability-enhancement process strongly depend on the injection style and rock type. Replacing constant-flow-rate schemes with cyclic pulse injections with variable flow rates (1) lowers the breakdown pressure, (2) modifies the magnitude-frequency distribution of seismic events, and (3) has a fundamental impact on the resulting fracture pattern. The concept of fatigue hydraulic fracturing serves as a possible explanation for such rock behaviour by making use of depressurisation phases to relax crack-tip stresses. During hydraulic fatigue, a significant portion of the hydraulic energy is converted into rock damage and fracturing. This finding may have significant implications for managing the economic and physical risks posed to communities affected by fluid-injection-induced seismicity.


2020 ◽  
Vol 35 (6) ◽  
pp. 325-339
Author(s):  
Vasily N. Lapin ◽  
Denis V. Esipov

AbstractHydraulic fracturing technology is widely used in the oil and gas industry. A part of the technology consists in injecting a mixture of proppant and fluid into the fracture. Proppant significantly increases the viscosity of the injected mixture and can cause plugging of the fracture. In this paper we propose a numerical model of hydraulic fracture propagation within the framework of the radial geometry taking into account the proppant transport and possible plugging. The finite difference method and the singularity subtraction technique near the fracture tip are used in the numerical model. Based on the simulation results it was found that depending on the parameters of the rock, fluid, and fluid injection rate, the plugging can be caused by two reasons. A parameter was introduced to separate these two cases. If this parameter is large enough, then the plugging occurs due to reaching the maximum possible concentration of proppant far from the fracture tip. If its value is small, then the plugging is caused by the proppant reaching a narrow part of the fracture near its tip. The numerical experiments give an estimate of the radius of the filled with proppant part of the fracture for various injection rates and leakages into the rock.


2013 ◽  
Vol 195 (2) ◽  
pp. 1282-1287 ◽  
Author(s):  
Arno Zang ◽  
Jeoung Seok Yoon ◽  
Ove Stephansson ◽  
Oliver Heidbach

Sign in / Sign up

Export Citation Format

Share Document