Polymer-Free Fracturing Fluid Exhibits Improved Cleanup for Unconventional Natural Gas Well Applications

Author(s):  
C.N. Fredd ◽  
T.N. Olsen ◽  
G. Brenize ◽  
B.W. Quintero ◽  
T. Bui ◽  
...  
Author(s):  
Christopher M. Long ◽  
Nicole L. Briggs ◽  
Brian A. Cochran ◽  
Destiny M. Mims

Abstract Background Limited air monitoring studies with long-term measurements during all phases of development and production of natural gas and natural gas liquids have been conducted in close proximity to unconventional natural gas well pads. Objective Conducted in an area of Washington County, Pennsylvania, with extensive Marcellus Shale development, this study investigated whether operations at an unconventional natural gas well pad may contribute to ambient air concentrations of potential health concern at a nearby school campus. Methods Almost 2 years of air monitoring for fine particulate matter (PM2.5) and volatile organic compounds (VOCs) was performed at three locations between 1000 and 2800 feet from the study well pad from December 2016 to October 2018. PM2.5 was measured continuously at one of the three sites using a beta attenuation monitor, while 24-h stainless steel canister samples were collected every 6 days at all sites for analysis of 58 VOCs. Results Mean PM2.5 concentrations measured during the different well activity periods ranged from 5.4 to 9.5 μg/m3, with similar levels and temporal changes as PM2.5 concentrations measured at a regional background location. The majority of VOCs were either detected infrequently or not at all, with measurements for a limited number of VOCs indicating the well pad to be a source of small and transient contributions. Significance All measurement data of PM2.5 and 58 VOCs, which reflect the cumulative contributions of emissions from the study well pad and other local/regional air pollutant sources (e.g., other well pads), were below health-based air comparison values, and thus do not provide evidence of either 24-hour or long-term air quality impacts of potential health concern at the school.


2012 ◽  
Author(s):  
James Littlefield ◽  
Joe Marriott ◽  
Timothy J Skone

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Zhang Jianwen ◽  
Jiang Aiguo ◽  
Xin Yanan ◽  
He Jianyun

The erosion-corrosion problem of gas well pipeline under gas–liquid two-phase fluid flow is crucial for the natural gas well production, where multiphase transport phenomena expose great influences on the feature of erosion-corrosion. A Eulerian–Eulerian two-fluid flow model is applied to deal with the three-dimensional gas–liquid two-phase erosion-corrosion problem and the chemical corrosion effects of the liquid droplets dissolved with CO2 on the wall are taken into consideration. The amount of erosion and chemical corrosion is predicted. The erosion-corrosion feature at different parts including expansion, contraction, step, screw sections, and bends along the well pipeline is numerically studied in detail. For dilute droplet flow, the interaction between flexible water droplets and pipeline walls under different operations is treated by different correlations according to the liquid droplet Reynolds numbers. An erosion-corrosion model is set up to address the local corrosion and erosion induced by the droplets impinging on the pipe surfaces. Three typical cases are studied and the mechanism of erosion-corrosion for different positions is investigated. It is explored by the numerical simulation that the erosion-corrosion changes with the practical production conditions: Under lower production rate, chemical corrosion is the main cause for erosion-corrosion; under higher production rate, erosion predominates greatly; and under very high production rate, erosion becomes the main cause. It is clarified that the parts including connection site of oil pipe, oil pipe set, and valve are the places where erosion-corrosion origins and becomes serious. The failure mechanism is explored and good comparison with field measurement is achieved.


Sign in / Sign up

Export Citation Format

Share Document