scholarly journals The Killing of the Burning Gas Well in the Caddo Oil Field, Louisiana

1915 ◽  
Vol 48 (01) ◽  
pp. 676-686
Author(s):  
C.D. Keen
Keyword(s):  
2021 ◽  
Vol 73 (03) ◽  
pp. 56-57
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper IPTC 20136, “Research and Application of Fracture Failure Control Technology for 13Cr Tubing in HP/HT Gas Wells,” by Lei Ma, Hongtao Liu, and Hailong Geng, PetroChina, et al., prepared for the 2020 International Petroleum Technology Conference, Dhahran, Saudi Arabia, 13-15 January. The paper has not been peer reviewed. Copyright 2020 International Petroleum Technology Conference. Reproduced by permission. Super 13Cr-110 tubing used in high-pressure, high-temperature (HP/HT) gas wells in the Tarim oil field has experienced numerous failures. After a series of investigations for root-cause analysis, the conclusion was that fracture of the tubing mechanistically is categorized as stress corrosion cracking (SCC) and is closely related to the application of phosphate-based completion fluid. Further tests indicated that Super 13Cr (S13Cr) tubing specimens experienced SCC with phosphate-based completion fluids contaminated with mud and oxygen, whereas formate-based completion fluid is compatible with S13Cr tubing. At present, 55 HP/HT gas wells in the field have used formate-based completion fluid with no tubing string fracture. Introduction Compared with the Gulf of Mexico, the North Sea, the South China Sea, the Qiongqiong Basin, and various Chinese oil and gas fields, the oil pipelines in the Tarim field are among the most difficult with regard to service conditions, which are characterized by extreme operating conditions such as high pump pressure and large displacement reform. Construction and high-yield alternating loads on tubing string and joint and a harsh, corrosive environment [chloride content greater than 80 000 mg/L, carbon dioxide (CO2) partial pressure greater than 1 MPa, and the presence of fresh and residual acid] pose significant challenges to the safe service of the tubing string. In the early stages of production, S13Cr oil pipe was selected as the completion string of the HP/HT gas well in the Kuqa mountain front, but in recent years, the S13Cr-110 pipe of the HP/HT gas well in the Tarim field has been continuously fractured. Failure accidents have caused serious economic losses. In the complete paper, through lateral comparison analysis of the failed tubing and indoor simulation experiments, the cause of the tubing fracture is discovered, solution measures are initiated, and good application results are achieved. Comparative Analysis of Oil-Pipe Failures Comparative Analysis of Fracture Macroscopic Morphology. When comparing the macroscopic topographic maps of oil-pipe failures seen in six studied wells, fracture locations of three wells are located in the coupling, while fracture locations of the other three wells are located on the body. In five wells (Wells A through E), the tubing fracture is neat, indicating brittle fracture with no plastic deformation. Well F, however, has a visible longitudinal crack on the surface of the tubing, and many burrs are visible at the fracture. Comparison and Analysis of Working Conditions of Failed Tubing. Through comparative analysis, it was determined that five of the six wells have under-gone acidification. The service shaft temperature, pressure, CO2 content, and formation water salinity of the failed wells differ, but, in five of the six wells, the tubing was exposed to a phosphate-based completion fluid.


2011 ◽  
Vol 418-420 ◽  
pp. 993-996 ◽  
Author(s):  
Jian Bing Zhang ◽  
Xiang Hong Lv

To find out the cause for fatigue failure of a drill string used in oil field drilling, and considering the actual working conditions, axial, radial and circumferential cyclic stresses borne by the drill string in borehole of oil and gas well, fatigue strength of drill string is analyzed based on multi-axial fatigue assessment method. Then the formula to calculate the mean stress of multi-axial load of the drill string is obtained, and the formula serves as a method to calculate multi-axial fatigue life of the drill string, which has been verified through field data. It is realized that multi-axial stress has significant influence on drill string fatigue. When on drill string fatigue, Soderberg equation shall be employed to calculate the stress amplitude of drill string fatigue.


2021 ◽  
Author(s):  
Rishabh Bharadwaj ◽  
Bhavya Kumari ◽  
Astha Patel

Abstract E&P activities are the early stage of energy production and pivotal for generating and sustaining economic growth. However, negligence and evaluating the circumstances incorrectly during these operations can lead to calamities like blowouts. This paper discusses two such tragedies, the Pasarlapudi (Krishna-Godavari) Gas Well Blowout of 1995 & Baghjan (Assam-Arakan) Oil Field Blowout of 2020, and provides possible well control measures and lessons learned. Pasarlapudi blowout incident occurred during the drilling operations. The pipe stuck-up situation at 2727m MD (Measured Depth) was detected by conducting a stretch test. Further analysis could include circulating brine, checking lost circulation and identifying casing leaks by measuring Sustained Casing Pressure (SCP), Operator-imposed Pressure (OIP), and Thermal-induced Pressure (TIP). Baghjan's gas well at the depth 3870m was producing at 2.8-3.5 MMSCFD. The aim was to plug the lower producing zone and recomplete the well in the upper Lakadong+Therria sand zone. Well was killed using brine, cement plug was placed and BOP installed. BOP was removed after the plug was set to begin the process of moving the workover rig. Well blew gas profusely during this process. Simulating a blowout and facing one, are two completely different situations. In Pasarlapudi's case, the well blew with an enormous gas pressure of 281.2 ± 0.5 kg/cm2. While drilling the production hole (8.5 inch), either differential pressure sticking, presence of water-swelling clay formation or the partial collapse of wellbore formation caused the pipe stuck-up situation. By conducting stretch test along with circulating brine, root cause of this problem could be identified. If differential sticking occurred, lost circulation could be checked & cured, while keeping the hole full. Circulating brine should solve the problem of swelling clay formation while formation collapse could have occurred due to the presence of plastic formation like salt domes. In the case of Baghjan gas well blowout during workover operations, probable safety measures could include placement of 2 or 3 backup cement plugs along with kill fluid or going for squeeze cementing before placing the cement plug & kill fluid while abandoning the lower producing zone. Attempts were made to bring the well under control by adequate water spraying, installing BOP. Water was pumped through the casing valve and a water reservoir was dug near the well plinth for the placement of pumps of 2500 gallon capacity. Proper safety measures should be used even when they're not the cheapest to avoid repetition of treatments and detrimental situations. SCP, OIP and TIP should be measured periodically whenever possible and the root cause of situations like lost circulation, pipe stuck-ups, kicks, casing leaks should be identified before proceeding towards drastic remedial operations. Innovations in countering well-control situations should be promoted invariably.


2020 ◽  
Vol 39 (6) ◽  
pp. 8823-8830
Author(s):  
Jiafeng Li ◽  
Hui Hu ◽  
Xiang Li ◽  
Qian Jin ◽  
Tianhao Huang

Under the influence of COVID-19, the economic benefits of shale gas development are greatly affected. With the large-scale development and utilization of shale gas in China, it is increasingly important to assess the economic impact of shale gas development. Therefore, this paper proposes a method for predicting the production of shale gas reservoirs, and uses back propagation (BP) neural network to nonlinearly fit reservoir reconstruction data to obtain shale gas well production forecasting models. Experiments show that compared with the traditional BP neural network, the proposed method can effectively improve the accuracy and stability of the prediction. There is a nonlinear correlation between reservoir reconstruction data and gas well production, which does not apply to traditional linear prediction methods


Sign in / Sign up

Export Citation Format

Share Document