Quantification of Asphaltene and Wax Sludge Build-up in Crude Oil Storage Facilities

Author(s):  
K.J. Leontaritis
1981 ◽  
pp. 385-392 ◽  
Author(s):  
D.E. Shaw ◽  
M.N. Plooster ◽  
R.D. Ellison

Author(s):  
Jack Broyles ◽  
Paul Dusseault ◽  
Frank Vanden Elsen

In response to industry demand, Hardisty Caverns Limited Partnership (HCLP) has developed cost effective underground storage facilities with a capacity to store 480,000 m3 (3 million barrels) of crude oil. This project is unique through the integration of existing underground salt caverns into a significant North American crude oil transportation hub. Annually, 64 million cubic meters (400 million barrels) of oil move through this hub. This project utilizes existing caverns developed in the late 1960’s. Significant work was required to upgrade the cavern facilities and to construct new surface facilities to integrate the caverns into the crude oil transportation hub. Remote operation of the facility is performed from a control centre in Edmonton. In this paper, the key features of the design and construction of the Hardisty Cavern Storage Project will be presented. Of particular interest are the unique challenges presented due to hydraulic considerations related to cavern operation with multiple product characteristics and to provide crude oil movements exchanges between the cavern storage facilities and both low flow rate feeder pipelines and high flow rate transportation pipelines.


2021 ◽  
Author(s):  
Kamalesh Gupta ◽  
Arun Kumar Jana ◽  
Mousumi Chakraborty ◽  
Parimal A. Parikh

1997 ◽  
Vol 15 (7-8) ◽  
pp. 755-764 ◽  
Author(s):  
S.A. Fazal ◽  
R. Rai ◽  
G.C. Joshi
Keyword(s):  

2017 ◽  
Vol 36 (2) ◽  
pp. 813-826 ◽  
Author(s):  
Ebrahim Ghotbi Ravandi ◽  
Reza Rahmannejad ◽  
Saeed Karimi-Nasab ◽  
Amir Sarrafi ◽  
Amir Raoof

2011 ◽  
Vol 15 (1) ◽  
pp. 91-104 ◽  
Author(s):  
Mahmood Farzaneh-Gord ◽  
Alireza Rasekh ◽  
Morteza Saadat ◽  
Amin Nabati

Lowering uncertainty in crude oil volume measurement has been widely considered as one of main purposes in an oil export terminal. It is found that crude oil temperature at metering station has big effects on measured volume and may cause big uncertainty at the metering point. As crude oil flows through an aboveground pipeline, pick up the solar radiation and heat up. This causes the oil temperature at the metering point to rise and higher uncertainty to be created. The amount of temperature rise is depended on exterior surface paint color. In the Kharg Island, there is about 3 km distance between the oil storage tanks and the metering point. The oil flows through the pipeline due to gravity effects as storage tanks are located 60m higher than the metering point. In this study, an analytical model has been conducted for predicting oil temperature at the pipeline exit (the metering point) based on climate and geographical conditions of the Kharg Island. The temperature at the metering point has been calculated and the effects of envelope color have been investigated. Further, the uncertainty in the measurement system due to temperature rise has been studied.


2021 ◽  
Author(s):  
Georgii V. Nesyn

Two flooded jet methods of tank bottom sediments caving based on either screw propeller generation or nozzle jets generated with entering crude head oppose each other. The comparison is not advantageous for the first one. Exceptionally if crude oil contains some concentration of high molecular weight polymer which can perform Drag Reduction. In this case, the jet range increases by many times, thus, upgrading the capability of caving system. Preventing the sedimentation of crude oil heavy components may be put into practice with Immiscible Layer Technology. Before filling the tank with crude oil, some quantity of heavy liquid, that is immiscible with all the components of crude oil, is poured into the tank. The most suitable/fit for purpose and available liquid is glycerin. Neither paraffin and resins, nor asphaltenes can penetrate through the glycerin layer to settle down at the tank bottom because of its density, which is equal to 1.26 g/cm3. Instead, sediments are concentrated at/on the glycerin surface and when it is heated in external heat exchanger all the sediments ought to move upwards with the convection streams. Thus, no deteriorate sediment is formed in the tank bottom.


Sign in / Sign up

Export Citation Format

Share Document