scholarly journals Water Curtain System Pre-design for Crude Oil Storage URCs: A Numerical Modeling and Genetic Programming Approach

2017 ◽  
Vol 36 (2) ◽  
pp. 813-826 ◽  
Author(s):  
Ebrahim Ghotbi Ravandi ◽  
Reza Rahmannejad ◽  
Saeed Karimi-Nasab ◽  
Amir Sarrafi ◽  
Amir Raoof
Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Ebrahim Ghotbi Ravandi ◽  
Reza Rahmannejad ◽  
Saeed Karimi-Nasab ◽  
Amir Sarrafi

Seepage control is a prerequisite for hydrocarbon storage in unlined rock caverns (URCs) where the seepage of stored products to the surrounding host rock and groundwater can cause serious environmental and financial problems. Practically seepage control is performed by permeability and hydrodynamic control methods. This paper employs numerical modelling and genetic programming (GP) for the purpose of seepage prediction and control method determination for the crude oil storage URCs based on the effective parameters including hydrogeologic characteristic of the rock and physicochemical properties of the hydrocarbons. Several levels for each parameter were considered and all the possible scenarios were modelled numerically for the two-phase mixture model formulation. The corresponding seepage values were evaluated to be used as genetic programming data base to generate representative equations for the hydrocarbon seepage value. The coefficients of determination (R2) and relative percent errors of the proposed equations show their ability in the seepage prediction and permeability or hydrodynamic control method determination and design. The results can be used for crude oil storage URCs worldwide.


2021 ◽  
Author(s):  
Kamalesh Gupta ◽  
Arun Kumar Jana ◽  
Mousumi Chakraborty ◽  
Parimal A. Parikh

2020 ◽  
Vol 37 (7) ◽  
pp. 2517-2537
Author(s):  
Mostafa Rezvani Sharif ◽  
Seyed Mohammad Reza Sadri Tabaei Zavareh

Purpose The shear strength of reinforced concrete (RC) columns under cyclic lateral loading is a crucial concern, particularly, in the seismic design of RC structures. Considering the costly procedure of testing methods for measuring the real value of the shear strength factor and the existence of several parameters impacting the system behavior, numerical modeling techniques have been very much appreciated by engineers and researchers. This study aims to propose a new model for estimation of the shear strength of cyclically loaded circular RC columns through a robust computational intelligence approach, namely, linear genetic programming (LGP). Design/methodology/approach LGP is a data-driven self-adaptive algorithm recently used for classification, pattern recognition and numerical modeling of engineering problems. A reliable database consisting of 64 experimental data is collected for the development of shear strength LGP models here. The obtained models are evaluated from both engineering and accuracy perspectives by means of several indicators and supplementary studies and the optimal model is presented for further purposes. Additionally, the capability of LGP is examined to be used as an alternative approach for the numerical analysis of engineering problems. Findings A new predictive model is proposed for the estimation of the shear strength of cyclically loaded circular RC columns using the LGP approach. To demonstrate the capability of the proposed model, the analysis results are compared to those obtained by some well-known models recommended in the existing literature. The results confirm the potential of the LGP approach for numerical analysis of engineering problems in addition to the fact that the obtained LGP model outperforms existing models in estimation and predictability. Originality/value This paper mainly represents the capability of the LGP approach as a robust alternative approach among existing analytical and numerical methods for modeling and analysis of relevant engineering approximation and estimation problems. The authors are confident that the shear strength model proposed can be used for design and pre-design aims. The authors also declare that they have no conflict of interest.


Sign in / Sign up

Export Citation Format

Share Document