scholarly journals Laboratory Investigation on the -Effect of In-Situ Stresses on Hydraulic Fracture Containment

1982 ◽  
Vol 22 (03) ◽  
pp. 333-340 ◽  
Author(s):  
Norman R. Warpinski ◽  
James A. Clark ◽  
Richard A. Schmidt ◽  
Clarence W. Huddle

Abstract Laboratory experiments have been conducted to determine the effect of in-situ stress variations on hydraulic fracture containment. Fractures were initiated in layered rock samples with prescribed stress variations, and fracture growth characteristics were determined as a function of stress levels. Stress contrasts of 300 to 400 psi (2 to 3 MPa) were found sufficient to restrict fracture growth in laboratory samples of Nevada tuff and Tennessee and Nugget sandstones. The required stress level was found not to depend on mechanical rock properties. However, permeability and the resultant pore pressure effects were important. Tests conducted at biomaterial interfaces between Nugget and Tennessee sandstones show that the resultant stresses set up near the interface because of the applied overburden stress affect the fracture behavior in the same way as the applied confining stresses. These results provide a guideline for determining the in-situ stress contrast necessary to contain a fracture in a field treatment. Introduction An under-standing of the factors that influence and control hydraulic fracture containment is important for the successful use of hydraulic fracturing technology in the enhanced production of natural gas from tight reservoirs. Optimally, this understanding would provide improved fracture design criteria to maximize fracture surface area in contact with the reservoir with respect to volume injected and other treatment parameters. In formations with a positive containment condition (i.e., where fracturing out of zone is not anticipated), long penetrating fractures could be used effectively to develop the resource. For the opposite case, the options would beto use a small treatment so that large volumes are not wasted in out-of-zone fracturing and to accept a lower productivity improvement, orto reject the zone as uneconomical. These decisions cannot be made satisfactorily unless criteria for vertical fracture propagation are developed and techniques for readily measuring the important parameters are available. Currently, both theoretical and experimental efforts are being pursued to determine the important parameters and their relative effects on fracture growth. Two modes of fracture containment are possible. One is the situation where fracture growth is terminated at a discrete interface. Examples of this include laboratory experiments showing fracture termination at weak or unbonded interfaces and theoretical models that predict that fracture growth will terminate at a material property interface. The other mode may occur when the fracture propagates into the bounding layer, but extensive growth does not take place and the fracture thus is restricted. An example is the propagation of the fracture into a region with an adverse stress gradient so that continued propagation results in higher stresses on the fracture, which limits growth, as suggested by Simonson et al. and as seen in mineback experiments. Another example is the possible restriction caused by propagation into a higher modulus region where the decreased width results in increased pressure drop in the fracture, which might inhibit extensive growth into that region relative to the lower modulus region. Other parameters, such as natural fractures, treatment parameters, pore pressure, etc., may affect either of these modes. Laboratory and mineback experiments have shown that weak interfaces and in-situ stress differences are the most likely factors to contain the fracture, and weak interfaces are probably effective only at shallow depths. Thus, our experiments are being performed to determine the effect of in-situ stresses on fracture containment, both in a uniform rock sample and at material properly interfaces. SPEJ P. 333^

2019 ◽  
pp. 2457-2467
Author(s):  
Riaed S. Al Siaede

     Geotechnical soil problems underneath foundation of hydraulic structures occurs due to engineering soil properties, geological setting and hydraulic properties of the projects. Two finite element programs of Geoslope 2012 software, SIGMA/W and SEEP/W, were used for analysis of in situ stresses, load deformation behavior, seepage quantity and vertical gradient below Teeb weir foundation, to compute factors of safety against seepage uplift. The site soil is a granular (gravel, sand and silt), weakly cemented soil cohered by gypsum and clay materials. The area has low lying topography, with slightly tectonic activities. The model results show that the upstream side stresses are reduced while the pore pressure are increased, indicating decreased stability. Soil displacement and settlement were measured and the effects of these displacements on the low cemented soil particles were discussed. The pressure distribution and vertical hydraulic gradient  measured and used for analyze the weir stability. Finally, the soil potential failure zones were drawn to fix the main risks in each sides of the weir.


1978 ◽  
Vol 18 (01) ◽  
pp. 27-32 ◽  
Author(s):  
E.R. Simonson ◽  
A.S. Abou-Sayed ◽  
R.J. Clifton

Abstract Hydraulic fracture containment is discussed in relationship to linear elastic fracture mechanics. Three cases are analyzed,the effect of different material properties for the pay zone and the barrier formation,the characteristics of fracture propagation into regions of varying in-situ stress, propagation into regions of varying in-situ stress, andthe effect of hydrostatic pressure gradients on fracture propagation into overlying or underlying barrier formations. Analysis shows the importance of the elastic properties, the in-situ stresses, and the pressure gradients on fracture containment. Introduction Application of massive hydraulic fracture (MHF) techniques to the Rocky Mountain gas fields has been uneven, with some successes and some failures. The primary thrust of rock mechanics research in this area is to understand those factors that contribute to the success of MHF techniques and those conditions that lead to failures. There are many possible reasons why MHF techniques fail, including migration of the fracture into overlying or underlying barrier formations, degradation of permeability caused by application of hydraulic permeability caused by application of hydraulic fracturing fluid, loss of fracturing fluid into preexisting cracks or fissures, or extreme errors in preexisting cracks or fissures, or extreme errors in estimating the quantity of in-place gas. Also, a poor estimate of the in-situ permeability can result in failures that may "appear" to be caused by the hydraulic fracture process. Previous research showed that in-situ permeabilities can be one order of magnitude or more lower than permeabilities measured at near atmospheric conditions. Moreover, studies have investigated the degradation in both fracture permeability and formation permeability caused by the application of hydraulic fracture fluids. Further discussion of this subject is beyond the scope of this paper. This study will deal mainly with the containment of hydraulic fractures to the pay zone. In general, the lithology of the Rocky Mountain region is composed of oil- and gas-bearing sandstone layers interspaced with shales (Fig. 1). However, some sandstone layers may be water aquifers and penetration of the hydraulic fracture into these penetration of the hydraulic fracture into these aquifer layers is undesirable. Also, the shale layers can separate producible oil- and gas-bearing zones from nonproducible ones. Shale layers between the pay zone and other zones can be vital in increasing successful stimulation. If the shale layers act as barrier layers, the hydraulic fracture can be contained within the pay zone. The in-situ stresses and the stiffness, as characterized by the shear modulus of the zones, play significant roles in the containment of a play significant roles in the containment of a hydraulic fracture. The in-situ stresses result from forces in the earth's crust and constitute the compressive far-field stresses that act to close the hydraulic fracture. Fig. 2 shows a schematic representation of in-situ stresses acting on a vertical hydraulic fracture. Horizontal components of in-situ stresses may vary from layer to layer (Fig. 2). For example, direct measurements of in-situ stresses in shales has shown the minimum horizontal principal stress is nearly equal to the overburden principal stress is nearly equal to the overburden stress. SPEJ P. 27


2015 ◽  
Author(s):  
Sameer Ganpule ◽  
Karthik Srinivasan ◽  
Tyler Izykowski ◽  
Barbara Luneau ◽  
Ernest Gomez

Abstract In-situ stress variability within a reservoir is a primary parameter that controls hydraulic fracture initiation, growth, connectivity, and ultimately drainage and well spacing. This paper highlights the importance of characterizing the variability of in-situ stress and demonstrates the risk of underestimating stimulation treatment size when a treatment design is applied in a “copy-paste” fashion without any modifications to account for variation in pore pressure and in-situ stress across a basin. Thermal maturity and hydrocarbon generation from unconventional shales has a direct effect on pore pressure and the in-situ stress distribution in reservoir and barrier rocks. An examination of the Bakken Petroleum System (BPS) identifies regions of thermal maturity and higher pore pressure due to hydrocarbon expulsion. Consequently, the elevated pore pressure and the resulting in-situ stress vary vertically and laterally within the basin. Multiple pore pressure profiles and corresponding stress profiles across the BPS were considered to quantify the impact of in-situ stress variability on hydraulic fracture geometry. These profiles include effects of normal pore pressure regime, over-pressure regime or pressure profiles transitioning from over pressure to normal pressure regimes. For a given stress profile, hydraulic fracture geometries are estimated using a fracture simulator, with multiple calibration points. The hydraulic fracture system and reservoir interactions are simulated in a subsequent production modeling phase which estimates drainage area characteristics, recovery forecasts and optimum well spacing for developing an asset. Results from stress profile sensitivity emphasize the need to address variability of in-situ stress as it directly impacts well spacing considerations in an asset development plan. For example, stress profile with a normal pore pressure regime results in longer hydraulic fracture lengths in the Middle Bakken (MB) thus requiring three wells per section to infill the asset. Conversely, stress profile with over-pressure regime in MB results in much shorter hydraulic fracture lengths thus requiring more than three wells per section to develop the asset. Incorrectly assuming overpressure in a normally pressured zone could lead to over-engineering of wells and unnecessary costs, whereas incorrectly assuming normal pressure in zones that are in fact overpressured could lead to sub-optimal completions and/or a reduction in overall production.


2010 ◽  
Vol 493 (1-2) ◽  
pp. 196-211 ◽  
Author(s):  
Ute Trautwein-Bruns ◽  
Katja C. Schulze ◽  
Stephan Becker ◽  
Peter A. Kukla ◽  
Janos L. Urai

2018 ◽  
Vol 10 (8) ◽  
pp. 3309-3317
Author(s):  
Ping Xiong ◽  
Wang-shui Hu ◽  
Hai-xia Hu ◽  
Hailong Liu

Abstract In this paper, whether the coal fines can be induced by shear failure during drainage process has been discussed in detail. By coupling with the percolation theory, the elasticity mechanics were used to construe the extra stresses in the formation surrounding with the hydraulic fracture. The safe window of the bottom hole pressure was also calculated from the failure envelope. The research shows that the formation pressure on the fracture surface of the coal seam is negatively related with the bottom hole pressure, and the induced stress is positively related with the bottom hole pressure during the drainage process of fractured CBM wells. The pore pressure around the fracture changed due to pore-elastic effects, which also caused a significant change of the in situ stresses. In order to avoid the breakout of the coal seam around hydraulic fracture during drainage process, the model of the reasonable bottom hole pressure is also built.


2015 ◽  
Author(s):  
Manhal Sirat ◽  
Mujahed Ahmed ◽  
Xing Zhang

Abstract In-situ stress state plays an important role in controlling fracture growth and containment in hydraulic fracturing managements. It is evident that the mechanical properties, existing stress regime and the natural fracture network of its reservoir rocks and the surrounding formations mainly control the geometry, size and containments of produced hydraulic fractures. Furthermore, the three principal in situ stresses' axes swap directions and magnitudes at different depths giving rise to identifying different mechanical bedrocks with corresponding stress regimes at different depths. Hence predicting the hydro-fractures can be theoretically achieved once all the above data are available. This is particularly difficult in unconventional and tight carbonate reservoirs, where heterogeneity and highly stress variation, in terms of magnitude and orientation, are expected. To optimize the field development plan (FDP) of a tight carbonate gas reservoir in Abu Dhabi, 1D Mechanical Earth Models (MEMs), involving generating the three principal in-situ stresses' profiles and mechanical property characterization with depth, have been constructed for four vertical wells. The results reveal the swap of stress magnitudes at different mechanical layers, which controls the dimension and orientation of the produced hydro-fractures. Predicted containment of the Hydro-fractures within the specific zones is likely with inevitable high uncertainty when the stress contrast between Sv, SHmax with Shmin respectively as well as Young's modulus and Poisson's Ratio variations cannot be estimated accurately. The uncertainty associated with this analysis is mainly related to the lacking of the calibration of the stress profiles of the 1D MEMs with minifrac and/or XLOT data, and both mechanical and elastic properties with rock mechanic testing results. This study investigates the uncertainty in predicting hydraulic fracture containment due to lacking such calibration, which highlights that a complete suite of data, including calibration of 1D MEMs, is crucial in hydraulic fracture treatment.


2021 ◽  
Author(s):  
Taylor Levon ◽  
Kit Clemons ◽  
Ben Zapp ◽  
Tim Foltz

Abstract With a recent trend in increased infill well development in the Midland basin and other unconventional plays, it has been shown that depletion has a significant impact on hydraulic fracture propagation. This is largely because production drawdown causes in-situ stress changes, resulting in asymmetric fracture growth toward the depleted regions. In turn, this can have a negative impact on production capacity. For the initial part of this study, an infill child well was drilled and completed adjacent to a parent well that had been producing for two years. Due to drilling difficulties, the child well was steered to a new target zone located 125 feet above the original target. However, relative to the original target, treatment data from the new zone indicated abnormal treatment responses leading to a study to evaluate the source of these variations and subsequent mitigation. The initial study was conducted using a pore pressure estimation derived from drill bit geomechanics data to investigate depletion effects on the infill child well. The pore pressure results were compared to the child well treatment responses and bottom hole pressure measurements in the parent well. Following the initial study, additional hydraulic fracture modeling studies were conducted on a separate pad to investigate depletion around the infill wells, determine optimal well spacing for future wells given the level of depletion, and optimize treatment designs for future wells in similar depletion scenarios. A depletion model workflow was implemented based on integrating hydraulic fracture modeling and reservoir analytics for future infill pad development. The geomechanical properties were calibrated by DFIT results and pressure matching of the parent well treatments for the in-situ virgin conditions. Parent well fracture geometries were used in an RTA for an analytical approach of estimating drainage area of the parent wells. These were then applied to a depletion profile in the hydraulic fracture model for well spacing analysis and treatment design sensitivities. Results of the initial study indicated that stages in the new, higher interval had higher breakdown pressures than the lower interval. Additionally, the child well drilled in the lower interval had normal breakdown pressures in line with the parent well treatments. This suggests that treatment differences in the wells were ultimately due to depletion of the offset parent well. Based on the modeling efforts, optimal infill well spacing was determined based on the on-production time of the parent wells. The optimal treatment designs were also determined under the same conditions to minimize offset frac hits and unnecessary completion costs. This case study presents the use of a multi-disciplinary approach for well spacing and treatment optimization. The integration of a novel method of estimating pore pressure and depletion modeling workflows were used in an inventive way to understand depletion effects on future development.


Sign in / Sign up

Export Citation Format

Share Document