Hydraulic Fracture Height Containment by Weak Horizontal Interfaces

2015 ◽  
Author(s):  
Dimitry Chuprakov ◽  
Romain Prioul

Abstract Weak formation bedding planes create a unique mechanism for hydraulic fracture height containment. They arrest the vertical growth of hydraulic fracture. The propagation across them may or may not occur. To quantify this fracture behavior, first we developed an analytical model of the elastic T-shaped fracture contact with frictional and cohesional interfaces. The model evaluates the fracture blunting and the shear activation of the interfaces. It predicts the buildup of the net pressure necessary for the fracture to cross the given interface. Next we conduct numerical simulations of the 3D fracture propagation in a formation with closely spaced horizontal interfaces. These simulations manifest intermittent and decelerated fracture growth in height, especially with low-viscosity fracturing fluids. This mechanism of fracture height containment is independent of the multilayer stress-contrast mechanism used conventionally. Combined with the stress mechanism, the fracture height containment model could alleviate the problem of height growth overestimation in some fracturing simulation cases.

1986 ◽  
Vol 108 (2) ◽  
pp. 107-115 ◽  
Author(s):  
I. D. Palmer ◽  
C. T. Luiskutty

There is a pressing need to compare and evaluate hydraulic fracture models which are now being used by industry to predict variable fracture height. The fractures of concern here are vertical fractures which have a pronounced elongation in the direction of the payzone, i.e., there is a dominant one-dimensional fluid flow along the payzone direction. A summary is given of the modeling entailed in the basic ORU fracture model, which calculates fracture height as a function of distance from the wellbore in the case of a continuous sand bounded by zones of higher (but equal) minimum in-situ stress. The elastic parameters are assumed the same in each layer, and injected flow rates and fluid parameters are taken to be constant. Leak-off is included with spurt loss, as well as non-Newtonian flow. An advantage of the model is its small computer run time. Predictions for wellbore height and pressure from the ORU model are compared separately with the AMOCO and MIT pseudo-3D models. In one instance of high stress contrast the ORU wellbore pressure agrees fairly well with the AMOCO model, but the AMOCO wellbore height is greater by 32 percent. Comparison between the ORU and MIT models in two cases (also high stress contrast) indicates height disagreement at the wellbore by factors of 1.5–2.5 with the MIT model giving a lower height. Thus it appears there can be substantial discrepancies between all three models. Next we compare the ORU model results with six cases of elongated fractures from the TERRA-TEK fully-3D model. Although two of these cases are precluded due to anomolous discrepancies, the other four cases show reasonable agreement. We make a critical examination of assumptions that differ in all the models (e.g., the effective modulus-stiffness multiplier approximation in the AMOCO model, the effect of finite fluid flow in the vertical direction in the MIT model, and the effect of 2D flow and limited perforated height in the TERRA-TEK model). Suggestions are made for reconciling some of the discrepancies between the various models. For example, the ORU/AMOCO height discrepancy appears to be resolved; for other discrepancies we have no explanation. Our main conclusion is that the AMOCO, TERRA-TEK and ORU models for fracture height and bottomhole pressure are in reasonable agreement for highly elongated fractures. Despite the difficulties in understanding the different models, the comparisons herein are an encouraging first step towards normalizing these hydraulic fracture models.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3245 ◽  
Author(s):  
Zheng ◽  
Liu ◽  
Zhang

Hydraulic fracturing is an effective method for developing unconventional reservoirs. The fracture height is a critical geometric parameter for fracturing design but will be limited by a weak interface. Fracture containment occurs when fracture propagation terminates at layer interfaces that are weaker than the surrounding rock. It always occurs in multilayer formation. Therefore, the mechanism of fracture height containment guides fracture height control in hydraulic fracturing. In order to study the fracture containment mechanism, this paper first calculates the propagation behaviour of the fracture in 3D under the influence of a weak interface through a block discrete element method and analyzes the geometric characteristics of the fracture after it meets the weak interface. Then, the induced stress of the hydraulic fracture on the weak interface is calculated by fracture mechanics theory, and the mechanism of blunting at the fracture tip is explained. Then, two kinds of interface slippage that can lead to blunting of the fracture tip are discussed. Based on the behavior of shear slippage at the interface, a control method for multilayer fracturing in thin sand-mud interbed and pay zone fracturing in shale is proposed. The results show that the fracture height is still limited by the weak interface in the formation without the difference of in-situ stress and rock properties. Interface slippage is the main factor impeding fracture propagation. Fracture height containment can be adjusted and controlled by changing the angle between the hydraulic fracture, the interface, and the stress state to strengthen and stiffen the interface. This study has a certain guiding significance for fracture height control in the design of hydraulic fracturing of shale or thin sand-mud interbed reservoirs.


1983 ◽  
Vol 23 (06) ◽  
pp. 870-878 ◽  
Author(s):  
Ian D. Palmer ◽  
H.B. Carroll

Abstract Models of three-dimensional (3D) fracture propagation are being developed to study the effect of variations of stress and rock properties on fracture height and bottomhole pressure (BHP). Initially a blanket sand bounded by zones of higher minimum in-situ stress is considered, with stresses symmetrical about both the pay-zone axis and the wellbore. An elliptical fracture perimeter is assumed. Fluid flows are one-dimensional (1D) Newtonian in the direction of the pay zone. Two models, FL1 and FL2, are developed. In FL1, a discontinuous stress variation is approximated by a y2 variation in the vertical coordinate, and the fracture criterion, Ki = Kc, is satisfied at both major and minor axes. The net pressure at the tip, Lf, of the long axis required by the boundary condition Ki = Kc does not seem crucial in determining fracture height or BHP (compare with one group of published models that assumes p = 0 at Lf). Model FL2 properly represents the discontinuous stresses, and satisfies Ki = Kc at the wellbore but not at the tip of the long axis. A parametric study is made, with both models, of the comparative effects of stress contrast, Kc, pay-zone height, h, and Young's modulus, E, on fracture height and BHP. Results indicate that Kc does not have as much effect as either E or, at least for large stress contrasts. Model FL2 suggests the possibility of a rapid growth in fracture height as is reduced. Such modeling may be able to give an upper or "safe" limit on the pumping parameters ( and ) to ensure good containment. When the stress contrast is high, 700 psi [4826 kPa], an analytic derivation of BHP appears to be a good approximation for the parameters we use, if everywhere the fracture height is assumed equal to the pay zone height. Although leakoff is neglected here, subsequent modeling results show that, for leak off coefficients 0.001 ft- min [3.9 × 10 -5 m.s ], the results herein are a good approximation to the case when leak off is included. Introduction In their essence, models of hydraulic fracture propagation involve elasticity theory and fluid mechanics. The first is concerned with the fracture opening or width, w(p), as a function of net pressure on the fracture faces, while the second is concerned with the pressure drop, p(w), caused by the flow of viscous fluids in the fracture. Simultaneous solution of these equations includes a boundary condition that often takes the form Ki = Kc, where Ki is the stress-intensity factor at a point on the fracture tip, and Kc is the fracture toughness. The final solution is very complex in 3D, when a vertical fracture can expand vertically as well as horizontally along the pay zone. Thus, the first solutions were essentially two-dimensional (2D), and they assumed that the fracture height, hf, was fixed at the pay zone height, h. The 2D solutions were clustered in two groups as summarized by Nordgren, Perkins, and Geertsma and Haafkens. The first grouping, based on a model by Christianovich and Zheltov, assumed that the sides of an elongated, vertical fracture were parallel (i.e., free slippage between the pay and bounding zones, or no vertical stiffness). Other papers in this grouping included Geertsma and de Klerk, Daneshy and Settari. SPEJ P. 870^


Sign in / Sign up

Export Citation Format

Share Document