Analysis of the Changes in De Facto Population Pattern and Effects of Local Environment on Changes in the De Facto Population in Seoul After the COVID-19

2021 ◽  
Vol 24 (3) ◽  
pp. 19-35
Author(s):  
Eun Hye Ryu ◽  
Eun Jung Kim
Author(s):  
Chester J. Calbick ◽  
Richard E. Hartman

Quantitative studies of the phenomenon associated with reactions induced by the electron beam between specimens and gases present in the electron microscope require precise knowledge and control of the local environment experienced by the portion of the specimen in the electron beam. Because of outgassing phenomena, the environment at the irradiated portion of the specimen is very different from that in any place where gas pressures and compositions can be measured. We have found that differential pumping of the specimen chamber by a 4" Orb-Ion pump, following roughing by a zeolite sorption pump, can produce a specimen-chamber pressure 100- to 1000-fold less than that in the region below the objective lens.


Author(s):  
M.J. Hennessy ◽  
E. Kwok

Much progress in nuclear magnetic resonance microscope has been made in the last few years as a result of improved instrumentation and techniques being made available through basic research in magnetic resonance imaging (MRI) technologies for medicine. Nuclear magnetic resonance (NMR) was first observed in the hydrogen nucleus in water by Bloch, Purcell and Pound over 40 years ago. Today, in medicine, virtually all commercial MRI scans are made of water bound in tissue. This is also true for NMR microscopy, which has focussed mainly on biological applications. The reason water is the favored molecule for NMR is because water is,the most abundant molecule in biology. It is also the most NMR sensitive having the largest nuclear magnetic moment and having reasonable room temperature relaxation times (from 10 ms to 3 sec). The contrast seen in magnetic resonance images is due mostly to distribution of water relaxation times in sample which are extremely sensitive to the local environment.


Author(s):  
D W McComb ◽  
R S Payne ◽  
P L Hansen ◽  
R Brydson

Electron energy-loss near-edge structure (ELNES) is an effective probe of the local geometrical and electronic environment around particular atomic species in the solid state. Energy-loss spectra from several silicate minerals were mostly acquired using a VG HB501 STEM fitted with a parallel detector. Typically a collection angle of ≈8mrad was used, and an energy resolution of ≈0.5eV was achieved.Other authors have indicated that the ELNES of the Si L2,3-edge in α-quartz is dominated by the local environment of the silicon atom i.e. the SiO4 tetrahedron. On this basis, and from results on other minerals, the concept of a coordination fingerprint for certain atoms in minerals has been proposed. The concept is useful in some cases, illustrated here using results from a study of the Al2SiO5 polymorphs (Fig.l). The Al L2,3-edge of kyanite, which contains only 6-coordinate Al, is easily distinguished from andalusite (5- & 6-coordinate Al) and sillimanite (4- & 6-coordinate Al). At the Al K-edge even the latter two samples exhibit differences; with careful processing, the fingerprint for 4-, 5- and 6-coordinate aluminium may be obtained.


Author(s):  
Edwin Sibert ◽  
Timothy Zwier ◽  
Jacob Dean ◽  
Nathanael Kidwell ◽  
Daniel Tabor
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
pp. 27-37
Author(s):  
Mourad Mansour ◽  
Alhassan G Mumuni

AbstractBeginning with the establishment of a Supreme Commission for Tourism and Antiquities’ (SCTA) in 2000, there have been official attempts by the government of Saudi Arabia to encourage domestic tourism in order to tap into the huge amounts that Saudis spend annually on vacations. This paper examines the motivations and attitudes of consumers toward tourism destinations and activities within the country (domestic tourism). Using data collected through a structured self-administered questionnaire, the study finds that familiarity and trust of the local environment, perceptions of the safer domestic environment, and limitations imposed by respondents’ vacation timing are the primary motives for choosing to spend their vacations locally, while lack of quality domestic tourist sites and services (including entertainment facilities), lack of tourism information, insufficient tourism organization services, and the harsh local environmental conditions during summer are factors that ‘push’ people from spending the vacations locally. Attitudes toward domestic tourism are generally negative, although there are significant differences in attitudes between respondents who prefer domestic destinations and those who prefer to travel out of Kingdom. Implications of the findings are outlined and discussed.


1997 ◽  
Author(s):  
B. Green ◽  
Gary Galica ◽  
Phillip Mulhall ◽  
O. Uy ◽  
Jeffrey Lesho ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Derrick Roberts ◽  
Ben S. Pilgrim ◽  
Tristan Dell ◽  
Molly Stevens

We describe the first report of a self-immolation cascade that can be reversibly paused and reactivated in response to pH changes. This system employs a triazole-based self-immolative linker, which expresses a pH-sensitive intermediate during its elimination sequence. This allows the system to respond to pH cues within its local environment, thus establishing a new way to gate self-immolative release using fluctuating or transient chemical signals.<br>


2020 ◽  
Author(s):  
hao yin ◽  
Liqing Zheng ◽  
Wei Fang ◽  
Yin-Hung Lai ◽  
Nikolaus Porenta ◽  
...  

<p>Understanding the mechanism of catalytic hydrogenation at the local environment requires chemical and topographic information involving catalytic sites, active hydrogen species and their spatial distribution. Here, tip-enhanced Raman spectroscopy (TERS) was employed to study the catalytic hydrogenation of chloro-nitrobenzenethiol on a well-defined Pd(sub-monolayer)/Au(111) bimetallic catalyst (<i>p</i><sub>H2</sub>=1.5 bar, 298 K), where the surface topography and chemical fingerprint information were simultaneously mapped with nanoscale resolution (≈10 nm). TERS imaging of the surface after catalytic hydrogenation confirms that the reaction occurs beyond the location of Pd sites. The results demonstrate that hydrogen spillover accelerates hydrogenation at the Au sites within 20 nm from the bimetallic Pd/Au boundary. Density functional theory was used to elucidate the thermodynamics of interfacial hydrogen transfer. We demonstrate that TERS as a powerful analytical tool provides a unique approach to spatially investigate the local structure-reactivity relationship in catalysis.</p>


2020 ◽  
Author(s):  
Hao Yin ◽  
Liqing Zheng ◽  
Wei Fang ◽  
Yin-Hung Lai ◽  
Nikolaus Porenta ◽  
...  

<p>Understanding the mechanism of catalytic hydrogenation at the local environment requires chemical and topographic information involving catalytic sites, active hydrogen species and their spatial distribution. Here, tip-enhanced Raman spectroscopy (TERS) was employed to study the catalytic hydrogenation of chloro-nitrobenzenethiol on a well-defined Pd(sub-monolayer)/Au(111) bimetallic catalyst (<i>p</i><sub>H2</sub>=1.5 bar, 298 K), where the surface topography and chemical fingerprint information were simultaneously mapped with nanoscale resolution (≈10 nm). TERS imaging of the surface after catalytic hydrogenation confirms that the reaction occurs beyond the location of Pd sites. The results demonstrate that hydrogen spillover accelerates hydrogenation at the Au sites within 20 nm from the bimetallic Pd/Au boundary. Density functional theory was used to elucidate the thermodynamics of interfacial hydrogen transfer. We demonstrate that TERS as a powerful analytical tool provides a unique approach to spatially investigate the local structure-reactivity relationship in catalysis.</p>


Sign in / Sign up

Export Citation Format

Share Document