scholarly journals A comprehensive analysis of the polygalacturonase family of wheat (Triticum aestivum L.) shed light on important genes affecting pollen development and anther dehiscence

2019 ◽  
Author(s):  
Jiali Ye ◽  
Xuetong Yang ◽  
Wei Li ◽  
Qi Liu ◽  
Fuqiang Niu ◽  
...  

Abstract Background: Polygalacturonase (PG) belongs to a large family of hydrolases that undertake many important functions in cell separation during plant growth and development by degrading pectin. The specific expression of PG genes in pollen may have great significance for plant male sterile research and hybrid wheat breeding. However, it has not been reported in wheat ( Triticum aestivum L.). Results: Therefore, we systematically studied the PG gene family using the latest published wheat reference genomic information. A total of 113 PGs were identified and renamed as TaPG01 - 113 based on their position on the chromosome. They were unequally distributed on 21 chromosomes and were classified into six categories of A-F. Analysis of gene structures and conserved motifs revealed that the TaPGs of Class C and D had relatively short gene sequences and a small number of introns, and Class E TaPGs were the least conserved and all members did not have III conserved domain. Segmental duplication has been shown to be one of the major drivers of the expansion of the wheat PG gene family. The cis-element predictions indicate that wheat PGs had a wide range of functions, including response to light, hypothermia, anaerobic and hormonal stimulation, and also involved in meristematic tissue expression. In addition, twelve spike-specific expressions of TaPGs were screened using RNA-seq data, and finally three important genes were identified by expression analysis in the sterile and fertile anthers of thermo-sensitive male sterile wheat. TaPG93 was involved in the pollen development and elongation of pollen tubes, and TaPG87 and TaPG95 played important roles in the separation of pollen grains and the cracking of anthers dehiscence. Conclusions: This study, we performed a thorough analysis of the wheat PG gene family and finally obtained three TaPGs that affect wheat fertility. This will lay a solid foundation for the function exploration of wheat PG gene family and provide new enlightenment for the fertility conversion mechanism of male sterile wheat.

2019 ◽  
Author(s):  
Jiali Ye ◽  
Xuetong Yang ◽  
Zhiquan Yang ◽  
Wei Li ◽  
Qi Liu ◽  
...  

Abstract Background: Polygalacturonase (PG) belongs to a large family of hydrolases with important functions in cell separation during plant growth and development via the degradation of pectin. The specific expression of PG genes in anthers may be significant for male sterility research and hybrid wheat breeding, but it has not been characterized in wheat (Triticum aestivum L.). Results: We systematically studied the PG gene family using the latest published wheat reference genomic information. In total, 113 wheat PG genes were identified and renamed as TaPG01–113 based on their chromosomal positions. The PG genes are unequally distributed on 21 chromosomes and classified according to six categories from A–F. Analysis of the gene structures and conserved motifs demonstrated that the Class C and D TaPGs have relatively short gene sequences and a small number of introns. Class E TaPGs are the least conserved and lack conserved domain III. Polyploidy and segmental duplications in wheat were mainly responsible for the expansion of the wheat PG gene family. Predictions of cis-elements indicate that TaPGs have a wide range of functions, including the responses to light, hypothermia, anaerobic conditions, and hormonal stimulation, as well as being involved in meristematic tissue expression. RNA-seq showed that TaPGs have specific temporal and spatial expression characteristics. Twelve spike-specific TaPGs were screened using RNA-seq data and verified by qRT-PCR in the sterile and fertile anthers of thermo-sensitive male-sterile wheat. Four important candidate genes were identified as involved in the male fertility determination process. In fertile anthers, TaPG09 may be involved in the separation of pollen. TaPG87 and TaPG95 could play important roles in anther dehiscence. TaPG93 may be related to pollen development and pollen tube elongation. Conclusions: We analyzed the wheat PG gene family and identified four important TaPGs with differential expression levels in the wheat fertility conversion process. Our findings may facilitate functional investigations of the wheat PG gene family and provide new insights into the fertility conversion mechanism in male-sterile wheat.


2020 ◽  
Vol 21 (2) ◽  
pp. 608 ◽  
Author(s):  
Jiali Ye ◽  
Xuetong Yang ◽  
Gan Hu ◽  
Qi Liu ◽  
Wei Li ◽  
...  

Heat shock transcription factors (HSFs) play crucial roles in resisting heat stress and regulating plant development. Recently, HSFs have been shown to play roles in anther development. Thus, investigating the HSF family members and identifying their protective roles in anthers are essential for the further development of male sterile wheat breeding. In the present study, 61 wheat HSF genes (TaHsfs) were identified in the whole wheat genome and they are unequally distributed on 21 chromosomes. According to gene structure and phylogenetic analyses, the 61 TaHsfs were classified into three categories and 12 subclasses. Genome-wide duplication was identified as the main source of the expansion of the wheat HSF gene family based on 14 pairs of homeologous triplets, whereas only a very small number of TaHsfs were derived by segmental duplication and tandem duplication. Heat shock protein 90 (HSP90), HSP70, and another class of chaperone protein called htpG were identified as proteins that interact with wheat HSFs. RNA-seq analysis indicated that TaHsfs have obvious period- and tissue-specific expression patterns, and the TaHsfs in classes A and B respond to heat shock, whereas the C class TaHsfs are involved in drought regulation. qRT-PCR identified three TaHsfA2bs with differential expression in sterile and fertile anthers, and they may be candidate genes involved in anther development. This comprehensive analysis provides novel insights into TaHsfs, and it will be useful for understanding the mechanism of plant fertility conversion.


Author(s):  
Duangjai Nachiangmai ◽  
Bernie Dell ◽  
Longbin Huang ◽  
Richard W. Bell ◽  
Benjavan Rerkasem

2008 ◽  
Vol 88 (5) ◽  
pp. 997-1013 ◽  
Author(s):  
C. J. Willenborg ◽  
R. C. Van Acker

This review summarizes the biological and ecological factors of hexaploid wheat (Triticum aestivum L.) that contribute to trait movement including the ability to volunteer, germination and establishment characteristics, breeding system, pollen movement, and hybridization potential. Although wheat has a short-lived seedbank with a wide range of temperature and moisture requirements for germination and no evidence of secondary dormancy, volunteer wheat populations are increasing in relative abundance and some level of seed persistence in the soil has been observed. Hexaploid wheat is predominantly self-pollinating with cleistogamous flowers and pollen viability under optimal conditions of only 0.5 h, yet observations indicate that pollen-mediated gene flow can and will occur at distances up to 3 km and is highly dependent on prevailing wind patterns. Hybridization with wild relatives such as A. cylindrica Host., Secale cereale L., and Triticum turgidum L. is a serious concern in regions where these species grow in field margins and unmanaged lands, regardless of which genome the transgene is located on. More research is needed to determine the long-term population dynamics of volunteer wheat populations before conclusions can be drawn with regard to their role in trait movement. Seed movement has the potential to create adventitious presence (AP) on a larger scale than pollen, and studies tracing the movement of wheat seed in the grain handling system are needed. Finally, the development of mechanistic models that predict landscape-level trait movement are required to identify transgene escape routes and critical points for gene containment in various cropping systems. Key words: Triticum, coexistence, gene flow, genetically-engineered, herbicide-resistant, trait confinement


2018 ◽  
Vol 41 (1) ◽  
pp. 79-94 ◽  
Author(s):  
Saurabh Gupta ◽  
Vinod Kumar Mishra ◽  
Sunita Kumari ◽  
Raavi ◽  
Ramesh Chand ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 476 ◽  
Author(s):  
Pavel Feduraev ◽  
Liubov Skrypnik ◽  
Anastasiia Riabova ◽  
Artem Pungin ◽  
Elina Tokupova ◽  
...  

Reacting to environmental exposure, most higher plants activate secondary metabolic pathways, such as the metabolism of phenylpropanoids. This pathway results in the formation of lignin, one of the most important polymers of the plant cell, as well as a wide range of phenolic secondary metabolites. Aromatic amino acids, such as phenylalanine and tyrosine, largely stimulate this process, determining two ways of lignification in plant tissues, varying in their efficiency. The current study analyzed the effect of phenylalanine and tyrosine, involved in plant metabolism through the phenylalanine ammonia-lyase (PAL) pathway, on the synthesis and accumulation of phenolic compounds, as well as lignin by means of the expression of a number of genes responsible for its biosynthesis, based on the example of common wheat (Triticum aestivum L.).


2019 ◽  
Vol 20 (24) ◽  
pp. 6252 ◽  
Author(s):  
Junchang Li ◽  
Jing Zhang ◽  
Huijuan Li ◽  
Hao Niu ◽  
Qiaoqiao Xu ◽  
...  

Male sterility is a valuable trait for genetic research and production application of wheat (Triticum aestivum L.). NWMS1, a novel typical genic male sterility mutant, was obtained from Shengnong 1, mutagenized with ethyl methane sulfonate (EMS). Microstructure and ultrastructure observations of the anthers and microspores indicated that the pollen abortion of NWMS1 started at the early uninucleate microspore stage. Pollen grain collapse, plasmolysis, and absent starch grains were the three typical characteristics of the abnormal microspores. The anther transcriptomes of NWMS1 and its wild type Shengnong 1 were compared at the early anther development stage, pollen mother cell meiotic stage, and binucleate microspore stage. Several biological pathways clearly involved in abnormal anther development were identified, including protein processing in endoplasmic reticulum, starch and sucrose metabolism, lipid metabolism, and plant hormone signal transduction. There were 20 key genes involved in the abnormal anther development, screened out by weighted gene co-expression network analysis (WGCNA), including SKP1B, BIP5, KCS11, ADH3, BGLU6, and TIFY10B. The results indicated that the defect in starch and sucrose metabolism was the most important factor causing male sterility in NWMS1. Based on the experimental data, a primary molecular regulation model of abnormal anther and pollen developments in mutant NWMS1 was established. These results laid a solid foundation for further research on the molecular mechanism of wheat male sterility.


Sign in / Sign up

Export Citation Format

Share Document