scholarly journals Qiang Xin 1 Formula Suppresses Excessive Pro-inflammatory Cytokine Responses and Microglia Activation to Prevent Cognitive Impairment and Emotional Dysfunctions in Experimental Sepsis

2019 ◽  
Author(s):  
Xuerui Wang ◽  
Xiaolong Xu ◽  
Yuhong Guo ◽  
Po Huang ◽  
Yanxiang Ha ◽  
...  

Abstract Background: Sepsis commonly leads to acute and long-term cognitive and affective impairments which are associated with increased mortality in patients. Neuroinflammation characterized by excessive cytokine release and immune cell activation underlies the behavioral changes associated with sepsis. We previously reported that the administration of a traditional Chinese herbal Qiang Xin 1 (QX1) formula improves survival in septic mice. This study was performed to better understand the effects and the mechanisms of QX1 formula treatment on behavioral changes in septic model. Methods: A preclinical septic model was induced by cecal ligation and puncture in mice. QX1 formula was orally administrated daily. Behavior test including Morris water maze, novel object recognition testing, elevated plus maze and open field testing was performed. Elisa, immunofluorescence, microarray analysis, and Real-time PCR were analyzed. Results: QX1 formula administration significantly improved survival, alleviated overall cognitive impairment and emotional dysfunction in septic mice. QX1 formula administration dramatically inhibited short and long-term excessive pro-inflammatory cytokine production both peripherally and centrally, and was accompanied by diminished microglial activation in septic mice. Biological processes including synaptic transmission, microglia cell activation, cytokine production, microglia cell polarization, as well as inflammatory responses related to signaling pathways including the MAPK signaling pathway and the NF-κB signaling pathway were altered prominently by QX1 formula treatment in the hippocampus of septic mice. In addition, QX1 formula administration decreased the expression of the M1 phenotype microglia gene markers such as Cd32, Socs3, and Cd68, while up-regulated M2 phenotype marker genes including Myc, Arg-1, and Cd206. Conclusions: QX1 formula administration attenuates cognitive deficits, emotional dysfunction, and reduces neuroinflammatory responses to improve survival in septic mice. Diminished microglial activation and altered microglial polarization are involved in the neuroprotective mechanism of QX1 formula.

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Vijayasree V. Giridharan ◽  
Allan Collodel ◽  
Jaqueline S. Generoso ◽  
Giselli Scaini ◽  
Rico Wassather ◽  
...  

Abstract Background Bacterial meningitis is a devastating central nervous system (CNS) infection with acute and long-term neurological consequences, including cognitive impairment. The aim of this study was to understand the association between activated microglia-induced neuroinflammation and post-meningitis cognitive impairment. Method Meningitis was induced in male Wistar rats by injecting Streptococcus pneumoniae into the brain through the cisterna magna, and rats were then treated with ceftriaxone. Twenty-four hours and 10 days after meningitis induction, rats were imaged with positron emission tomography (PET) using [11C]PBR28, a specific translocator protein (TSPO) radiotracer, to determine in vivo microglial activation. Following imaging, the expression of TSPO, cardiolipin, and cytochrome c, inflammatory mediators, oxidative stress markers, and glial activation markers were evaluated in the prefrontal cortex and hippocampus. Ten days after meningitis induction, animals were subjected to behavioral tests, such as the open-field, step-down inhibitory avoidance, and novel object recognition tests. Results Both 24-h (acute) and 10-day (long-term) groups of rats demonstrated increased [11C]PBR28 uptake and microglial activation in the whole brain compared to levels in the control group. Although free from infection, 10-day group rats exhibited increased expression levels of cytokines and markers of oxidative stress, microglial activation (IBA-1), and astrocyte activation (GFAP) similar to those seen in the 24-h group. Acute meningitis induction also elevated TSPO, cytochrome c, and caspase-3 levels with no change in caspase-9 levels. Furthermore, upregulated levels of TSPO, cytochrome c, and caspase-3 and caspase-9 were observed in the rat hippocampus 10 days after meningitis induction with a simultaneous reduction in cardiolipin levels. Animals showed a cognitive decline in all tasks compared with the control group, and this impairment may be at least partially mediated by activating a glia-mediated immune response and upregulating TSPO. Conclusions TSPO-PET could potentially be used as an imaging biomarker for microglial activation and long-term cognitive impairment post-meningitis. Additionally, this study opens a new avenue for the potential use of TSPO ligands after infection-induced neurological sequelae.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Yajuan Li ◽  
Qingmin Li ◽  
Cunjuan Wang ◽  
Shengde Li ◽  
Lingzhi Yu

Neuropathic pain, which is one of the most common forms of chronic pain, seriously increases healthcare costs and impairs patients’ quality of life with an incidence of 7–10% worldwide. Microglia cell activation plays a key role in the progression of neuropathic pain. Better understanding of novel molecules modulating microglia cell activation and these underlying functions will extremely benefit the exploration of new treatment. Recent studies suggested long noncoding RNAs may be involved in neuropathic pain. However, its underlying functions and mechanisms in microglia cell activation remain unclear. To identify the differentially expressed lncRNAs and predict their functions in the progression of microglia cell activation, GSE103156 was analyzed using integrated bioinformatics methods. The expression levels of selected lncRNAs and mRNAs were determined by real-time PCR. In the present study, a total of 56 lncRNAs and 298 mRNAs were significantly differentially expressed. The differentially expressed mRNAs were mainly enriched in NF-kappa B signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, and NOD-like receptor signaling pathway. The top 10 hub genes were Tnf, Il6, Stat1, Cxcl10, Il1b, Tlr2, Irf1, Ccl2, Irf7, and Ccl5 in the PPI network. Our results showed that Gm8989, Gm8979, and AV051173 may be involved in the progression of microglia cell activation. Taken together, our findings suggest that lots of lncRNAs may be involved in BV2 microglia cell activation in vitro. The findings may provide relevant information for the development of promising targets for the microglial cells activation of neuropathic pain in vivo in the future.


2021 ◽  
Author(s):  
Chenyang Wu ◽  
Xin Cao ◽  
xiaojin zhang

V-domain immunoglobulin (Ig) suppressor of T cell activation (VISTA) is a novel negative checkpoint regulator that mediates T cell proliferation and cytokine production. Blockade of the VISTA signaling pathway has...


2007 ◽  
Vol 178 (4) ◽  
pp. 1991-1999 ◽  
Author(s):  
Anja S. Tessarz ◽  
Sandra Weiler ◽  
Kai Zanzinger ◽  
Pavla Angelisová ◽  
Václav Horejsí ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document