scholarly journals Variation of rhizosphere bacterial community diversity in the desert ephemeral plant Ferula sinkiangensis across environmental gradients

2019 ◽  
Author(s):  
Zhang Tao ◽  
Dang Han Li ◽  
Wang Zhong Ke ◽  
Lv Xin Hua ◽  
Zhuang Li

Abstract Background Ferula sinkiangensis is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in regulating global biogeochemical cycle, plant growth and adaptability. However, the Ferula sinkiangensis bacterial community and the processes that drive its assembly remain unclear. Results In this study, based on Illumina HiSeq high-throughput sequencing, we explored the diversity, structure and composition of Ferula sinkiangensis rhizosphere bacterial communities at different slope positions (upper, middle and bottom) and soil depths (0-10 cm, 10-25 cm, 25-40 cm) and their correlation with soil physicochemical properties. Actinobacteria (22.7%), Proteobacteria (18.6%), Acidobacteria (14.0%), Gemmatimonadetes (10.1%), Cyanobacteria (7.9%), Bacteroidetes (6.9%), Planctomycetes (3.9%), Verrucomicrobia (3.5%), Firmicutes (3.4%) and Chloroflexi (3.2%) were the dominant bacterial phyla in Ferula sinkiangensis rhizosphere soil. Variance analysis showed that the diversity and abundance of rhizosphere bacterial community in Ferula sinkiangensis were significantly different at various slope positions and soil depths. Specifically, the diversity of bacterial community was significantly higher at the top than the bottom of the slope, and the diversity and richness of bacterial community were significantly greater in the 0-10cm than the 25-40cm soil layer. Linear discriminant effect size (LEfSe) analysis showed the specific phyla and genera of bacteria affected by slope position and soil depth. For example, Planctomycetes, Sphingomonas , Rubrobacter and Adhaeribacter by slope position and significant impact on soil depth. In addition, distance-based redundancy analysis (db-RDA) and variance analysis showed that soil physicochemical factors jointly explained 29.81% of variation in Ferula sinkiangensis rhizosphere bacterial community structure. There was a significant positive correlation between available phosphorus(AP)and the diversity of Ferula sinkiangensis rhizosphere bacterial community ( p < 0.01), whereas pH largely explained the variation of Ferula sinkiangensis rhizosphere bacterial community structure (5.58%, p < 0.01), followed by altitude (5.53%), total salt (TS, 5.21%) and total phosphorus (TP, 4.90%). Conclusion Our results revealed the heterogeneity and variation trends of Ferula sinkiangensis rhizosphere bacterial community diversity and abundance on a fine spatial scale (slope position and depth) and shed new light on the interaction mechanisms between Ferula sinkiangensis rhizosphere bacterial community and soil physicochemical properties.

2020 ◽  
Author(s):  
Zhang Tao ◽  
Dang Han Li ◽  
Wang Zhong Ke ◽  
Lv Xin Hua ◽  
Zhuang Li

Abstract Background Ferula sinkiangensis is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in regulating global biogeochemical cycle, plant growth and adaptability. However, the Ferula sinkiangensis bacterial community and the processes that drive its assembly remain unclear. Results In this study, based on Illumina HiSeq high-throughput sequencing, we explored the diversity, structure and composition of Ferula sinkiangensis rhizosphere bacterial communities at different slope positions (upper, middle and bottom) and soil depths (0-10 cm, 10-25 cm, 25-40 cm) and their correlation with soil physicochemical properties. Actinobacteria (22.7%), Proteobacteria (18.6%), Acidobacteria (14.0%), Gemmatimonadetes (10.1%), Cyanobacteria (7.9%), Bacteroidetes (6.9%), Planctomycetes (3.9%), Verrucomicrobia (3.5%), Firmicutes (3.4%) and Chloroflexi (3.2%) were the dominant bacterial phyla in Ferula sinkiangensis rhizosphere soil. Variance analysis showed that the diversity and abundance of rhizosphere bacterial community in Ferula sinkiangensis were significantly different at various slope positions and soil depths. Specifically, the diversity of bacterial community was significantly higher at the top than the bottom of the slope, and the diversity and richness of bacterial community were significantly greater in the 0-10cm than the 25-40cm soil layer. Linear discriminant effect size (LEfSe) analysis showed the specific phyla and genera of bacteria affected by slope position and soil depth. For example, Planctomycetes, Sphingomonas , Rubrobacter and Adhaeribacter by slope position and significant impact on soil depth. In addition, distance-based redundancy analysis (db-RDA) and variance analysis showed that soil physicochemical factors jointly explained 29.81% of variation in Ferula sinkiangensis rhizosphere bacterial community structure. There was a significant positive correlation between available phosphorus(AP)and the diversity of Ferula sinkiangensis rhizosphere bacterial community ( p < 0.01), whereas pH largely explained the variation of Ferula sinkiangensis rhizosphere bacterial community structure (5.58%, p < 0.01), followed by altitude (5.53%), total salt (TS, 5.21%) and total phosphorus (TP, 4.90%). Conclusion Our results revealed the heterogeneity and variation trends of Ferula sinkiangensis rhizosphere bacterial community diversity and abundance on a fine spatial scale (slope position and depth) and shed new light on the mechanisms of coevolution and interaction between Ferula sinkiangensis and their rhizosphere bacterial communities across environmental gradients.


Author(s):  
Zhang tao ◽  
Wang Zhongke ◽  
Lv Xinhua ◽  
Dang Hanli ◽  
Zhuang Li

Ferula sinkiangensis is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, Ferula sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of Ferula sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and variation trends of Ferula sinkiangensis rhizosphere bacterial community diversity and abundance on a fine spatial scale (Slope position and soil depth) and Found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in Ferula sinkiangensi s rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in Ferula sinkiangensis . In addition, Soil physicochemical factors jointly explained 24.28% of variation in Ferula sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of Ferula sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tao Zhang ◽  
Zhongke Wang ◽  
Xinhua Lv ◽  
Hanli Dang ◽  
Li Zhuang

Abstract Ferula sinkiangensis (F. sinkiangensis) is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, F. sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of F. sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and changed trend of F. sinkiangensis rhizosphere bacterial community diversity and abundance on slope position and soil depth and found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in F. sinkiangensis rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in F. sinkiangensis. In addition, Soil physicochemical factors jointly explained 24.28% of variation in F. sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of F. sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).


Author(s):  
Zhang tao ◽  
Wang Zhongke ◽  
Lv Xinhua ◽  
Dang Hanli ◽  
Zhuang Li

Ferula sinkiangensis is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, Ferula sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of Ferula sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and variation trends of Ferula sinkiangensis rhizosphere bacterial community diversity and abundance on a fine spatial scale (Slope position and soil depth) and Found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in Ferula sinkiangensi s rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in Ferula sinkiangensis . In addition, Soil physicochemical factors jointly explained 24.28% of variation in Ferula sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of Ferula sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).


Author(s):  
Zhang tao ◽  
Wang Zhongke ◽  
Lv Xinhua ◽  
Dang Hanli ◽  
Zhuang Li

Ferula sinkiangensis ( F.sinkiangensis ) is a desert short-lived medicinal plant, and its number is rapidly decreasing. Rhizosphere microbial community plays an important role in plant growth and adaptability. However, F.sinkiangensis rhizosphere bacterial communities and the soil physicochemical factors that drive the bacterial community distribution are currently unclear. On this study, based on high-throughput sequencing, we explored the diversity, structure and composition of F.sinkiangensis rhizosphere bacterial communities at different slope positions and soil depths and their correlation with soil physicochemical properties. Our results revealed the heterogeneity and changed trend of F.sinkiangensis rhizosphere bacterial community diversity and abundance on slope position and soil depth and found Actinobacteria (25.5%), Acidobacteria (16.9%), Proteobacteria (16.6%), Gemmatimonadetes (11.5%) and Bacteroidetes (5.8%) were the dominant bacterial phyla in F.sinkiangensis rhizosphere soil. Among all soil physicochemical variables shown in this study, there was a strong positive correlation between phosphorus (AP) and the diversity of rhizosphere bacterial community in F.sinkiangensis . In addition, Soil physicochemical factors jointly explained 24.28% of variation in F.sinkiangensis rhizosphere bacterial community structure. Among them, pH largely explained the variation of F.sinkiangensis rhizosphere bacterial community structure (5.58%), followed by total salt (TS, 5.21%) and phosphorus (TP, 4.90%).


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yunfeng Luo ◽  
Zhongke Wang ◽  
Yaling He ◽  
Guifang Li ◽  
Xinhua Lv ◽  
...  

Abstract Background Ferula sinkiangensis is an increasingly endangered medicinal plant. Arbuscular mycorrhiza fungi (AMF) are symbiotic microorganisms that live in the soil wherein they enhance nutrient uptake, stress resistance, and pathogen defense in host plants. While such AMF have the potential to contribute to the cultivation of Ferula sinkiangensis, the composition of AMF communities associated with Ferula sinkiangensis and the relationship between these fungi and other pertinent abiotic factors still remains to be clarified. Results Herein, we collected rhizosphere and surrounding soil samples at a range of depths (0–20, 20–40, and 40–60 cm) and a range of slope positions (bottom, middle, top). These samples were then subjected to analyses of soil physicochemical properties and high-throughput sequencing (Illumina MiSeq). We determined that Glomus and Diversispora species were highly enriched in all samples. We further found that AMF diversity and richness varied significantly as a function of slope position, with this variation primarily being tied to differences in relative Glomus and Diversispora abundance. In contrast, no significant relationship was observed between soil depth and overall AMF composition, although some AMF species were found to be sensitive to soil depth. Many factors significantly affected AMF community composition, including organic matter content, total nitrogen, total potassium, ammonium nitrogen, nitrate nitrogen, available potassium, total dissolvable salt levels, pH, soil water content, and slope position. We further determined that Shannon diversity index values in these communities were positively correlated with total phosphorus, nitrate-nitrogen levels, and pH values (P < 0.05), whereas total phosphorus, total dissolvable salt levels, and pH were positively correlated with Chao1 values (P < 0.05). Conclusion In summary, our data revealed that Glomus and Diversispora are key AMF genera found within Ferula sinkiangensis rhizosphere soil. These fungi are closely associated with specific environmental and soil physicochemical properties, and these soil sample properties also differed significantly as a function of slope position (P < 0.05). Together, our results provide new insights regarding the relationship between AMF species and Ferula sinkiangensis, offering a theoretical basis for further studies of their development.


2020 ◽  
Author(s):  
Yunfeng Luo ◽  
Zhongke Wang ◽  
Yaling He ◽  
Guifang Li ◽  
Xinhua Lv ◽  
...  

Abstract Background: Ferula sinkiangensis is an increasingly endangered medicinal plant. Arbuscular mycorrhiza fungi (AMF) are symbiotic microorganisms that live in the soil wherein they enhance nutrient uptake, stress resistance, and pathogen defense in host plants. While such AMF have the potential to aid in Ferula sinkiangensis cultivation, the composition of AMF communities associated with Ferula sinkiangensis and the relationship between these fungi and other pertinent abiotic factors remain to be clarified.Results: Herein, we collected samples of rhizosphere and surrounding soil at a range of depths (0-20, 20-40, and 40-60 cm) and a range of slope positions (bottom, middle, top). These samples were then subjected to analyses of soil physicochemical properties and high-throughput sequencing (Illumina MiSeq). We determined that Glomus and Diversispora species were highly enriched in all samples. We further found that AMF diversity and richness varied significantly as a function of slope position, with this variation primarily being tied to differences in relative Glomus and Diversispora abundance. In contrast, no significant relationship was observed between soil depth and overall AMF composition, although some AMF species were found to be sensitive to soil depth. Many factors were found to significantly affect AMF community composition, including organic matter content, total nitrogen, total potassium, ammonium nitrogen, nitrate nitrogen, available potassium, total dissolvable salt levels, pH, soil water content, and slope position. We further found that Shannon diversity index values in these communities were positively correlated with total phosphorus, nitrate-nitrogen levels, and pH values (P<0.05), whereas total phosphorus, total dissolvable salt levels, and pH were positively correlated with Chao1 values (P<0.05).Conclusion: In summary, these findings reveal that Glomus and Diversispora are key AMF genera found within the rhizosphere soil of Ferula sinkiangensis. These fungi are closely associated with specific environmental and soil physicochemical properties. The physical and chemical properties of these soil samples also differed significantly as a function of slope position (P<0.05). Together, our results provide new insights regarding the relationship between AMF species and Ferula sinkiangensis, providing a theoretical basis for further studies of their development.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 954
Author(s):  
Saiyaremu Halifu ◽  
Xun Deng ◽  
Xiaoshuang Song ◽  
Yuning An ◽  
Ruiqing Song

Pinus sylvestris var. mongolica is an important tree species for ecological construction and environmental restoration owing to its rapid growth rate and excellent stress resistance. Pinus sylvestris var. mongolica sphaeropsis blight is a widespread disease caused by Sphaeropsis sapinea. This study was focused on non-infected (CK) and infected (SS) Pinus sylvestris var. mongolica plants in Zhanggutai area, Liaoning Province, China. Illumina high-throughput sequencing based on the templates of sequencing-by-synthesis working with reversible terminators is a widely used approach. In the present study, systematic differences in relationships among rhizosphere soil physicochemical properties, bacterial community structure, diverse bacterial genera, and alpha diversity indices between the two categories were evaluated. The current findings are as follows: (1) Shannon’s index of SS soil was significantly higher than CK, and it was significantly lower in May than July and September (p < 0.05). (2) Non-metric multidimensional scaling (NMDS) showed a difference in bacterial community structure during May (spring), July (summer), and September. (3) At the phylum level, no significant difference was found in the bacterial genera between CK and SS soil for three seasons; however, at the genus level, there were about 19 different bacterial genera. The correlation studies between 19 different bacterial genera and environmental factors and α-diversity indicated that bacterial genera of non-infected and infected Pinus sylvestris var. mongolica were distributed differently. The bacterial genera with CK were positively correlated with soil physicochemical properties, while a negative correlation was found for SS. In conclusion, the differences in nutrient and microbial community structure in the rhizosphere soil of Pinus sylvestris var. mongolica are the main causes of shoot blight disease.


Sign in / Sign up

Export Citation Format

Share Document