scholarly journals An exploration of the complex biogeographical history of the Neotropical banner-wing damselflies (Odonata: Polythoridae)

Author(s):  
Melissa Sanchez Herrera ◽  
Christopher Beatty ◽  
Renato Nunes ◽  
Camilo Salazar ◽  
Jessica L Ware

Abstract Background: The New World Tropics has experienced a dynamic landscape across evolutionary history and harbors a high diversity of flora and fauna. While there are some studies addressing diversification in Neotropical vertebrates and plants, there is still a lack of knowledge in arthropods. Here we examine temporal and spatial diversification patterns in the damselfly family Polythoridae, which comprises seven genera with a total of 58 species distributed across much of Central and South America. Results Our time-calibrated phylogeny for 48 species suggests that this family radiated during the late Eocene (~33 Ma), diversifying during the Miocene. As with other neotropical groups, the Most Recent Common Ancestor (MRCA) of most of the Polythoridae genera has a primary origin in the Northern Andes though the MRCA of at least one genus may have appeared in the Amazon Basin. Our molecular clock suggests correlations with some major geographical events, and our biogeographical modeling (with BioGeoBEARS and RASP) found a significant influence of the formation of the Pebas and Acre systems on the early diversification of these damselflies, though evidence for the influence of the rise of the different Andean ranges was mixed. Diversification rates have been uniform in all genera except one— Polythore —where a significant increase in the late Pliocene (~3 mya) may have been influenced by recent Andean uplift. Conclusion The biogeographical models implemented here suggest that the Pebas and Acre Systems were significant geological events associated with the diversification of this damselfly family; while diversification in the tree shows some correlation with mountain building events, it is possible that other abiotic and biotic changes during our study period have influenced diversification as well. The high diversification rate observed in Polythore could be explained by the late uplift of the Northern Andes. However, it is possible that other intrinsic factors like sexual and natural selection acting on color patterns could be involved in the diversification of this genus.

2020 ◽  
Author(s):  
Melissa Sanchez Herrera ◽  
Christopher Beatty ◽  
Renato Nunes ◽  
Camilo Salazar ◽  
Jessica L Ware

Abstract Background: The New World Tropics has experienced a dynamic landscape across evolutionary history and harbors a high diversity of flora and fauna. While there are some studies addressing diversification in Neotropical vertebrates and plants, there is still a lack of knowledge in arthropods. Here we examine temporal and spatial diversification patterns in the damselfly family Polythoridae, which comprises seven genera with a total of 58 species distributed across much of Central and South America. Results Our time-calibrated phylogeny for 48 species suggests that this family radiated during the early Eocene (~56 Ma), diversifying during the middle Eocene. As with other neotropical groups, the Most Recent Common Ancestor (MRCA) of most of the Polythoridae genera has a primary origin in the Northern Andes though the MRCA of at least one genus may have appeared in the Amazon Basin. Our molecular clock suggests correlations with some major geographical events, and our biogeographical modeling (with BioGeoBEARS and RASP) found a significant influence of the formation of the Pebas and Acre systems on the early diversification of these damselflies, though evidence for the influence of the rise of the different Andean ranges was mixed. Diversification rates have been uniform in all genera except one—Polythore—where a significant increase in the late Pliocene (~3 mya) may have been influenced by recent Andean uplift. Conclusion The biogeographical models implemented here suggest that the Pebas and Acre Systems were significant geological events associated with the diversification of this damselfly family; while diversification in the tree shows some correlation with mountain building events, it is possible that other abiotic and biotic changes during our study period have influenced diversification as well. The high diversification rate observed in Polythore could be explained by the late uplift of the Northern Andes. However, it is possible that other intrinsic factors like sexual and natural selection acting on color patterns could be involved in the diversification of this genus.


2020 ◽  
Author(s):  
Melissa Sanchez Herrera ◽  
Christopher Beatty ◽  
Renato Nunes ◽  
Camilo Salazar ◽  
Jessica L Ware

Abstract Background: The New World Tropics has experienced a dynamic landscape across evolutionary history and harbors a high diversity of flora and fauna. While there are some studies addressing diversification in Neotropical vertebrates and plants, there is still a lack of knowledge in arthropods. Here we examine temporal and spatial diversification patterns in the damselfly family Polythoridae; which comprises seven genera with a total of 58 species distributed across much of Central and South America.Results: Our time-calibrated phylogeny for 48 species suggests that this family radiated during the early Eocene (~56 Ma), diversifying during the middle Eocene. As with other neotropical groups, the Most Recent Common Ancestor (MRCA) of most of the Polythoridae genera has a primary origin in the Northern Andes though the MRCA of at least one genus may have appeared in the Amazon Basin. Diversification rates have been uniform in all genera except one—Polythore—where a significant increase in the late Pliocene (~3 mya) correlates with mountain uplift. While our molecular clock suggests correlations with some major geographical events, our biogeographical modeling (with BioGeoBEARS and RASP) found little influence of the formation of the Pebas and Acre systems or Andean mountain building, possibly due to the short branch lengths in our time-dated phylogeny, or perhaps to climatic variability during the period in question. Conclusion: The biogeographical models implemented here were unable to explain the effect of South American major geological events (i.e Pebas and Acre systems, Andes uplift) on the diversification of this damselfly family; while diversification in the tree shows some correlation with mountain building events, it is possible that other abiotic and biotic changes during our study period have influenced diversification as well. The high diversification rate observed in Polythore could be explained by the late uplift of the Northern Andes. However, it is possible that other intrinsic factors like sexual and natural selection acting on color patterns could be involved in the diversification of this genus.


Author(s):  
Mariela C. Castro ◽  
Murilo J. Dahur ◽  
Gabriel S. Ferreira

AbstractDidelphidae is the largest New World radiation of marsupials, and is mostly represented by arboreal, small- to medium-sized taxa that inhabit tropical and/or subtropical forests. The group originated and remained isolated in South America for millions of years, until the formation of the Isthmus of Panama. In this study, we present the first reconstruction of the biogeographic history of Didelphidae including all major clades, based on parametric models and stratified analyses over time. We also compiled all the pre-Quaternary fossil records of the group, and contrasted these data to our biogeographic inferences, as well as to major environmental events that occurred in the South American Cenozoic. Our results indicate the relevance of Amazonia in the early diversification of Didelphidae, including the divergence of the major clades traditionally ranked as subfamilies and tribes. Cladogeneses in other areas started in the late Miocene, an interval of intense shifts, especially in the northern portion of Andes and Amazon Basin. Occupation of other areas continued through the Pliocene, but few were only colonized in Quaternary times. The comparison between the biogeographic inference and the fossil records highlights some further steps towards better understanding the spatiotemporal evolution of the clade. Finally, our results stress that the early history of didelphids is obscured by the lack of Paleogene fossils, which are still to be unearthed from low-latitude deposits of South America.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ricardo Micolino ◽  
Maykon Passos Cristiano ◽  
Natália Martins Travenzoli ◽  
Denilce Meneses Lopes ◽  
Danon Clemes Cardoso

AbstractFungus-farming ants of the genus Mycetophylax exhibit intra and interspecific chromosome variability, which makes them suitable for testing hypotheses about possible chromosomal rearrangements that endure lineage diversification. We combined cytogenetic and molecular data from Mycetophylax populations from coastal environments to trace the evolutionary history of the clade in light of chromosomal changes under a historical and geographic context. Our cytogenetic analyses revealed chromosomal differences within and among species. M. morschi exhibited three distinct karyotypes and considerable variability in the localization of 45S rDNA clusters. The molecular phylogeny was congruent with our cytogenetic findings. Biogeographical and divergence time dating analyses estimated that the most recent common ancestor of Mycetophylax would have originated at about 30 Ma in an area including the Amazon and Southern Grasslands, and several dispersion and vicariance events may have occurred before the colonization of the Brazilian Atlantic coast. Diversification of the psammophilous Mycetophylax first took place in the Middle Miocene (ca. 18–10 Ma) in the South Atlantic coast, while “M. morschi” lineages diversified during the Pliocene-Pleistocene transition (ca. 3–2 Ma) through founder-event dispersal for the Northern coastal regions. Psammophilous Mycetophylax diversification fits into the major global climatic events that have had a direct impact on the changes in sea level as well as deep ecological impact throughout South America. We assume therefore that putative chromosomal rearrangements correlated with increased ecological stress during the past climatic transitions could have intensified and/or accompanied the divergence of the psammophilous Mycetophylax. We further reiterate that “M. morschi” comprises a complex of at least three well-defined lineages, and we emphasize the role of this integrative approach for the identification and delimitation of evolutionary lineages.


1998 ◽  
Vol 95 (16) ◽  
pp. 9402-9406 ◽  
Author(s):  
Bruce G. Baldwin ◽  
Michael J. Sanderson

Comparisons between insular and continental radiations have been hindered by a lack of reliable estimates of absolute diversification rates in island lineages. We took advantage of rate-constant rDNA sequence evolution and an “external” calibration using paleoclimatic and fossil data to determine the maximum age and minimum diversification rate of the Hawaiian silversword alliance (Compositae), a textbook example of insular adaptive radiation in plants. Our maximum-age estimate of 5.2 ± 0.8 million years ago for the most recent common ancestor of the silversword alliance is much younger than ages calculated by other means for the Hawaiian drosophilids, lobelioids, and honeycreepers and falls approximately within the history of the modern high islands (≤5.1 ± 0.2 million years ago). By using a statistically efficient estimator that reduces error variance by incorporating clock-based estimates of divergence times, a minimum diversification rate for the silversword alliance was estimated to be 0.56 ± 0.17 species per million years. This exceeds average rates of more ancient continental radiations and is comparable to peak rates in taxa with sufficiently rich fossil records that changes in diversification rate can be reconstructed.


2021 ◽  
Vol 288 (1957) ◽  
pp. 20211402
Author(s):  
Nadia G. Cervino ◽  
Agustín J. Elias-Costa ◽  
Martín O. Pereyra ◽  
Julián Faivovich

The eyes of frogs and toads (Anura) are among their most fascinating features. Although several pupil shapes have been described, the diversity, evolution, and functional role of the pupil in anurans have received little attention. Studying photographs of more than 3200 species, we surveyed pupil diversity, described their morphological variation, tested correlation with adult habits and diel activity, and discuss major evolutionary patterns considering iris anatomy and visual ecology. Our results indicate that the pupil in anurans is a highly plastic structure, with seven main pupil shapes that evolved at least 116 times during the history of the group. We found no significant correlation between pupil shape, adult habits, and diel activity, with the exception of the circular pupil and aquatic habits. The vertical pupil arose at least in the most-recent common ancestor of Anura + Caudata, and this morphology is present in most early-diverging anuran clades. Subsequently, a horizontal pupil, a very uncommon shape in vertebrates, evolved in most neobatrachian frogs. This shape evolved into most other known pupil shapes, but it persisted in a large number of species with diverse life histories, habits, and diel activity patterns, demonstrating a remarkable functional and ecological versatility.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1236
Author(s):  
Elisabeth Hempel ◽  
Michael V. Westbury ◽  
José H. Grau ◽  
Alexandra Trinks ◽  
Johanna L. A. Paijmans ◽  
...  

Since the 19th century, the addax (Addax nasomaculatus) has lost approximately 99% of its former range. Along with its close relatives, the blue antelope (Hippotragus leucophaeus) and the scimitar-horned oryx (Oryx dammah), the addax may be the third large African mammal species to go extinct in the wild in recent times. Despite this, the evolutionary history of this critically endangered species remains virtually unknown. To gain insight into the population history of the addax, we used hybridization capture to generate ten complete mitochondrial genomes from historical samples and assembled a nuclear genome. We found that both mitochondrial and nuclear diversity are low compared to other African bovids. Analysis of mitochondrial genomes revealed a most recent common ancestor ~32 kya (95% CI 11–58 kya) and weak phylogeographic structure, indicating that the addax likely existed as a highly mobile, panmictic population across its Sahelo–Saharan range in the past. PSMC analysis revealed a continuous decline in effective population size since ~2 Ma, with short intermediate increases at ~500 and ~44 kya. Our results suggest that the addax went through a major bottleneck in the Late Pleistocene, remaining at low population size prior to the human disturbances of the last few centuries.


2017 ◽  
Author(s):  
Tanai Cardona ◽  
Patricia Sánchez-Baracaldo ◽  
A. William Rutherford ◽  
Anthony W. D. Larkum

AbstractPhotosystem II is a photochemical reaction center that catalyzes the light-driven oxidation of water to molecular oxygen. Water oxidation is the distinctive photochemical reaction that permitted the evolution of oxygenic photosynthesis and the eventual rise of Eukaryotes. At what point during the history of life an ancestral photosystem evolved the capacity to oxidize water still remains unknown. Here we study the evolution of the core reaction center proteins of Photosystem II using sequence and structural comparisons in combination with Bayesian relaxed molecular clocks. Our results indicate that a homodimeric photosystem with sufficient oxidizing power to split water had already appeared in the early Archean about a billion years before the most recent common ancestor of all described Cyanobacteria capable of oxygenic photosynthesis, and well before the diversification of some of the known groups of anoxygenic photosynthetic bacteria. Based on a structural and functional rationale we hypothesize that this early Archean photosystem was capable of water oxidation and had already evolved some level of protection against the formation of reactive oxygen species, which would place primordial forms of oxygenic photosynthesis at a very early stage in the evolutionary history of life.


2016 ◽  
Author(s):  
Kimberly F. McManus ◽  
Angela Taravella ◽  
Brenna Henn ◽  
Carlos D. Bustamante ◽  
Martin Sikora ◽  
...  

AbstractThe human DARC (Duffy antigen receptor for chemokines) gene encodes a membrane-bound chemokine receptor crucial for the infection of red blood cells by Plasmodium vivax, a major causative agent of malaria. Of the three major allelic classes segregating in human populations, the FY*O allele has been shown to protect against P. vivax infection and is near fixation in sub-Saharan Africa, while FY*B and FY*A are common in Europe and Asia, respectively. Due to the combination of its strong geographic differentiation and association with malaria resistance, DARC is considered a canonical example of a locus under positive selection in humans.Here, we use sequencing data from over 1,000 individuals in twenty-one human populations, as well as ancient human and great ape genomes, to analyze the fine scale population structure of DARC. We estimate the time to most recent common ancestor (TMRCA) of the FY*O mutation to be 42 kya (95% CI: 34–49 kya). We infer the FY*O null mutation swept to fixation in Africa from standing variation with very low initial frequency (0.1%) and a selection coefficient of 0.043 (95% CI:0.011–0.18), which is among the strongest estimated in the genome. We estimate the TMRCA of the FY*A mutation to be 57 kya (95% CI: 48–65 kya) and infer that, prior to the sweep of FY*O, all three alleles were segregating in Africa, as highly diverged populations from Asia and ≠Khomani San hunter-gatherers share the same FY*A haplotypes. We test multiple models of admixture that may account for this observation and reject recent Asian or European admixture as the cause.Author SummaryInfectious diseases have undoubtedly played an important role in ancient and modern human history. Yet, there are relatively few regions of the genome involved in resistance to pathogens that have shown a strong selection signal. We revisit the evolutionary history of a gene associated with resistance to the most common malaria-causing parasite, Plasmodium vivax, and show that it is one of regions of the human genome that has been under strongest selective pressure in our evolutionary history (selection coefficient: 5%). Our results are consistent with a complex evolutionary history of the locus involving selection on a mutation that was at a very low frequency in the ancestral African population (standing variation) and a large differentiation between European, Asian and African populations.


Author(s):  
vicente cabrera

Ancient DNA has given a new vision to the recent history of human evolution. However, by always relying on the information provided by whole genome sequencing, some relevant relationships between modern humans and its archaic relatives have been misinterpreted by hybridization and recombination causes. In contrast, the congruent phylogeny, obtained from non-recombinant uniparental markers, indicates that humans and Neanderthals are sister subspecies, and that the most recent common ancestor of modern humans was not of African origin but Eurasian.


Sign in / Sign up

Export Citation Format

Share Document