scholarly journals Exploring the role of transtibial prosthetic use in Deep Tissue Injury development: A scoping review

2020 ◽  
Author(s):  
Marisa Graser(Former Corresponding Author) ◽  
Sarah Day ◽  
Arjan Buis(New Corresponding Author)

Abstract Background: The soft tissue of the residual limb in transtibial prosthetic users encounters unique biomechanical challenges. Although not intended to tolerate high loads and deformation, it becomes a weight-bearing structure within the residuum-prosthesis-complex. Consequently, deep soft tissue layers may be damaged, resulting in Deep Tissue Injury (DTI). Whilst considerable effort has gone into DTI research on immobilised individuals, only little is known about the aetiology and population-specific risk factors in amputees. This scoping review maps out and critically appraises existing research on DTI in lower-limb prosthetic users according to (1) the population-specific aetiology, (2) risk factors, and (3) methodologies to investigate both. Results: A systematic search within the databases Pubmed, Ovid Excerpta Medica, and Scopus identified 16 English-language studies. The results indicate that prosthetic users may be at risk for DTI during various loading scenarios. This is influenced by individual surgical, morphological, and physiological determinants, as well as the choice of prosthetic componentry. However, methodological limitations, high inter-patient variability, and small sample sizes complicate the interpretation of outcome measures. Additionally, fundamental research on cell and tissue reactions to dynamic loading and on prosthesis-induced alterations of the vascular and lymphatic supply is missing. Conclusion: We therefore recommend increased interdisciplinary research endeavours with a focus on prosthesis-related experimental design to widen our understanding of DTI. The results have the potential to initiate much-needed clinical advances in surgical and prosthetic practice and inform future pressure ulcer classifications and guidelines.

2016 ◽  
Vol 29 (4) ◽  
pp. 178-190 ◽  
Author(s):  
Hyochol Ahn ◽  
Linda Cowan ◽  
Cynthia Garvan ◽  
Debra Lyon ◽  
Joyce Stechmiller

Author(s):  
Arjan Buis ◽  
Francesco Guarato ◽  
Jason Law ◽  
Zoe Ralston ◽  
Anna Courtney

BACKGROUND: Background:  Acoustic emission from structures subject to external loads can be monitored to detect internal damage before destruction occurs. It is hypothesised that deformation of soft tissue will emit acoustic signals which may aid early detection of deep tissue injury, particularly in the lower limb amputee population. No previous studies have applied this method to biological soft tissue. OBJECTIVE: To determine if skeletal muscle tissue produced measurable acoustic emission during dynamic tensile loading with the aim to establish a reliable biomarker for lower limb prosthetic socket fit quantification and prosthetic health. STUDY DESIGN: Experimental study design. METHODOLOGY: In this research article, Sus scrofa domesticus (pork) muscle and Gallus gallus domesticus (chicken) muscle specimens (10mm width x 45mm height x 4mm depth) were submerged into saline baths while an Instron testing machine applied displacement controlled tensile loads. Time stamped, load, displacement and acoustic signal (hydrophone) data was collected. FINDINGS: The pork muscle was tested to failure being subject to tensile load. Prior to failure, no peaks were found in the amplitude or frequency of the acoustic signal to indicate that either tissue deformation or failure was occurring.  Data gathered during chicken muscle testing was inconclusive. CONCLUSIONS: Results displayed that tensile testing of pork intercostal muscle produced tissue deformation and failure with no detectable change in the amplitude or frequency of the background sound during tensile loading. The other specimens failed before reaching the same levels of tensile load. Further studies are required in order to address the numerous limitations of this study. LAYMAN’S ABSTRACT Humans are made of biological material, some are hard such as the skeleton and some are soft as in muscles. When the soft tissue are under a too high stress condition, such as in diabetic patients, we talk about deep tissue injury. It has been proven that deep tissue injury negatively impacts the affected persons’ quality of life, through a reduction in mobility and ability levels. Deep tissue injury is additionally very costly to health care systems worldwide. Unfortunately, those with lower limb dysvascularity (in particular, amputees with limb loss secondary to dysvascularity and/or neuropathy) are at heightened risk of further damage from deep tissue injury.  Therefore, this study ultimately aims to be used as a basis in order to determine if, at some stage, it would be possible to detect tissue that was ‘at risk’ of developing deep tissue injury. ARTICLE PDF LINK: https://jps.library.utoronto.ca/index.php/cpoj/article/view/30354/23004 How to cite: Buis A, Guarato F, Law J, Ralston Z, Courtney A. A feasibility study to investigate if there is a correlation between soft tissue deformation and acoustic emission. Canadian Prosthetics & Orthotics Journal, Volume 1, Issue 1, No 5, 2018. DOI: https://doi.org/10.33137/cpoj.v1i1.30354


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Eran Linder-Ganz ◽  
Amit Gefen

Deep tissue injury (DTI) is a potentially life-threatening form of pressure ulcer that onsets in muscle tissue overlying bony prominences and progresses unnoticeably to more superficial tissues. To minimize DTI, the efficacy of wheelchair cushions should be evaluated not only based on their performance in redistributing interface pressures but also according to their effects on stress concentrations in deep tissues, particularly muscles. However, a standard bioengineering approach for such analyses is missing in literature. The goals of this study were to develop an algorithm to couple finite element (FE) modeling of the buttocks with an injury threshold for skeletal muscle and with a damage-stiffening law for injured muscle tissue, from previous animal experiments, to predict DTI onset and progression for different patient anatomies and wheelchair cushions. The algorithm was also employed for identifying intrinsic (anatomical) biomechanical risk factors for DTI onset. A set of three-dimensional FE models of seated human buttocks was developed, representing different severities of pathoanatomical changes observed in chronically sitting patients: muscle atrophy and “flattening” of the ischial tuberosity (IT). These models were then tested with cushions of different stiffnesses representing products available on the market and semirigid supports. Outcome measures were the percentage of damaged muscle tissue volumes after 90min and 110min of simulated continuous immobilized sitting as well as muscle injury rates post-60min, -90min, and -110min of continuous sitting. Damaged muscle volumes grew exponentially with the level of muscle atrophy. For example, simulation of a subject with 70% muscle atrophy sitting on a soft cushion showed damage to 33% of the muscle volume after 90min of immobilized sitting, whereas a comparable simulation with a nonatrophied muscle yielded only 0.4% damaged tissue volume. The rates of DTI progression also increased substantially with increasing severities of muscle atrophy, e.g., 70% atrophy resulted in 8.9, 2.7, and 1.6 times greater injury rates compared with the “reference” muscle thickness cases, after 60min, 90min, and 110min of sitting, respectively. Across all simulation cases, muscle injury rate was higher when a “flatter” IT was simulated. Stiffer cushions increased both the extent and rate of DTI at times shorter than 90min of continuous sitting, but after 110min, volumes and rates of tissue damage converged to approximately similar values across the different cushion materials. The present methodology is a practical tool for evaluating the performances of cushions in reducing the risk for DTI in a manner that goes far beyond the commonly accepted measurements of sitting pressures.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


2010 ◽  
Vol 43 (3) ◽  
pp. 570-575 ◽  
Author(s):  
Bastiaan J. van Nierop ◽  
Anke Stekelenburg ◽  
Sandra Loerakker ◽  
Cees W. Oomens ◽  
Dan Bader ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document