scholarly journals Two mathematical frameworks for vesicle release from a ribbon synapse of a retinal bipolar cell

2020 ◽  
Author(s):  
Hassan Bassereh ◽  
Frank Rattay

Abstract Background: Bipolar cells communicate with amacrine and ganglion cells of the retina via both transient and sustained neurotransmitter release in ribbon synapses. Reconstructing the published quantitative release data from electrical soma stimulation (voltage clamp experiments) of rat rod bipolar cells were used to develop two simple models to predict the number of released vesicles as time series. In the experiment, the currents coming to the AII amacrine cell originating from releasing vesicles from the rod bipolar cell were recorded using paired-recordings in whole-cell voltage-clamp method. One of the models is based directly on terminal transmembrane voltage, so-called ‘modelV’, whereas the temporally exacter modelCa includes changes of intracellular calcium concentrations at terminals. Results: The intracellular calcium concentration method replicates a 0.43-ms signal delay for the transient release to pulsatile stimulation as a consequence of calcium channel dynamics in the presynaptic membrane, while the modelV has no signal delay. Both models produce the quite similar results in low stimuli amplitudes. However, for large stimulation intensities that may be done during extracellular stimulations in retinal implants, the modelCa predicts that the reversal potential of calcium limits the number of transiently released vesicles. Adding sodium and potassium ion channels to the axon of the cell enable to study the impact of spikes on the transient release in BC ribbons. A spike elicited by somatic stimulation causes the rapid release of all vesicles that are available for transient release, while a non-spiking BC with a similar morphometry needs stronger stimuli for any transient vesicle release. During extracellular stimulation, there was almost no difference in transient release between the active and passive cells because in both cases the terminal membrane of the cell senses the same potentials originating from the microelectrode. An exception was found for long pulses when the spike has the possibility to generate a higher terminal voltage than the passive cell. Simulated periodic 5 Hz stimulation showed a reduced transient release of 3 vesicles per stimulus, which is a recovery effect. Conclusions: We presented two mathematical concepts for vesicle release in ribbon synapses and explained decreasing efficiency in retinal implants for suprathreshold stimulation.

2021 ◽  
Author(s):  
Ben James ◽  
Pawel Piekarz ◽  
Jose Moya-Diaz ◽  
Leon Lagnado

The statistics of vesicle release determine how information is transferred in neural circuits. The classical model is of Poisson synapses releasing vesicles independently but ribbon synapses transmit early sensory signals by multivesicular release (MVR) when two or more vesicles are coordinated as a single synaptic event. To investigate the impact of MVR on the spike code we used leaky integrate-and-fire models with inputs simulating the statistics of vesicle release measured experimentally from retinal bipolar cells. Comparing these with models of independent release we find that MVR increases spike generation and the efficiency of information transfer (bits per spike) over a range of conditions that mimic retinal ganglion cells of different time-constant receiving different number of synaptic inputs of different strengths. When a single input drives a neuron with short time-constant, as occurs when hair cells transmit auditory signals, MVR increases information transfer whenever spike generation requires depolarization greater than that caused by a single vesicle. This study demonstrates how presynaptic integration of vesicles by MVR can compensate for less effective summation post-synaptically to increase the efficiency with which sensory information is transmitted at the synapse.


1995 ◽  
Vol 74 (2) ◽  
pp. 856-875 ◽  
Author(s):  
M. A. Gillette ◽  
R. F. Dacheux

1. Voltage- and ligand-gated currents were recorded from solitary rabbit rod bipolar cells using the whole cell patch-clamp technique. The rod bipolar cell forms a single, stereotypical physiological and morphological class of cells that was easily identified from other neurons and support cells after enzymatic and mechanical dissociation from isolated retina. Protein kinase C immunoreactivity confirmed the validity of using a purely morphological identification of this cell type. 2. Voltage steps in 15-mV increments from a holding potential of -45 mV elicited a large outward current activated near -30 mV. These voltage-gated currents were eliminated by using equimolar substitutions of Cs+ and tetraethylammonium+ for K+ in the pipette, indicating that they represent a mixture of K+ currents. 3. The putative inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine activated inward Cl- currents when pressure-applied from pipettes placed near the axon terminals of rod bipolar cells, which were voltage-clamped at -45 mV. With changes in intracellular or extracellular Cl- concentration, the reversal potential of these ligand-gated currents changed as predicted by the Nernst equation for Cl- activity. The dose-response curves for GABA and glycine were sigmoidal with saturating concentrations of 100 and 300 microM, respectively. 4. GABA-activated currents were 1) reversibly reduced by the allosteric inhibitor picrotoxin and the competitive antagonist bicuculline; 2) potentiated by the benzodiazepine diazepam and the barbiturate barbital sodium; and 3) indistinguishable from muscimol-activated currents. There was no response to the GABAB agonist baclofen. Collectively, these data strongly suggest that the GABA-activated currents in rabbit rod bipolar cells are mediated by the GABAA receptor. This is similar to the GABA-activated currents in other mammalian rod bipolar cells. 5. Application of the conformationally restricted GABA analogue cis-4-aminocrotonic acid (CACA) failed to elicit a response, whereas the conformationally extended GABA analogue trans-4-aminocrotonic acid (TACA) elicited a response similar to that of GABA. Although bicuculline appeared to suppress the GABA-activated current slightly more than the TACA-activated current (not significant using Student's t-distribution), GABA- and TACA-activated currents were equally suppressed by picrotoxin and equally enhanced by diazepam and barbital sodium. These data, coupled with the inefficacy of CACA, argue against the existence of a GABAC-type channel in the rod bipolar cell of the rabbit and suggest that GABA and TACA were activating the same GABAA receptor-channel complex.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 16 (6) ◽  
pp. 1181-1189 ◽  
Author(s):  
STEPHEN C. MASSEY ◽  
STEPHEN L. MILLS

Electrical synapses or gap junctions occur between many retinal neurons. However, in most cases, the gap junctions have not been visualized directly. Instead, their presence has been inferred from tracer spread throughout the network of cells. Thus, tracer coupling is taken as a marker for the presence of gap junctions between coupled cells. AII amacrine cells are critical interneurons in the rod pathway of the mammalian retina. Rod bipolar cell output passes to AII amacrine cells, which in turn make conventional synapses with OFF cone bipolar cells and gap junctions with ON cone bipolar cells. Injections of biotinylated tracers into AII amacrine cells reveals coupling between the AII amacrine cell network and heterologous coupling with a variety of ON cone bipolar cells, including the calbindin-positive cone bipolar cell. To directly visualize gap junctions in this network, we prepared material for electron microscopy that was double labeled with antibodies to calretinin and calbindin to label AII amacrine cells and calbindin-positive cone bipolar cells, respectively. AII amacrine cells were postsynaptic to large vesicle-laden rod bipolar terminals, as previously reported. Gap junctions were identified between AII amacrine cells and calbindin-positive cone bipolar cell terminals identified by the presence of immunostaining and ribbon synapses. This represents direct confirmation of gap junctions between two different yet positively identified cells, which are tracer coupled, and provides additional evidence that tracer coupling with Neurobiotin indicates the presence of gap junctions. These results also definitively establish the presence of gap junctions between AII amacrine cells and calbindin bipolar cells which can therefore carry rod signals to the ON alpha ganglion cell.


1981 ◽  
Vol 211 (1184) ◽  
pp. 373-389 ◽  

A serial section analysis of photoreceptor synaptic bases was undertaken in the clawed frog Xenopus laevis . The developmental period from tadpole stage 48 through metamorphosis was studied. Horizontal cells contacted rod and cone photoreceptors at ribbon synapses; the number of such contacts per receptor base was constant for rods, but increased for cones as a function-of developmental stage. In pre-metamorphic animals bipolar cells contacted receptors only through basal junctions; their number in cone bases increased dramatically during development but was unchanged in rod bases. A densitometric estimation of the cleft width of basal junctions showed that it ranged from 10 to 18 nm, but the junctions could not be divided reliably into the ‘wide’ and ‘narrow’ categories reported for other vertebrate species. Near metamorphic climax a new type of ribbon-related bipolar cell junction appeared. Gap junctions between horizontal cells and conventional chemical synapses of horizontal cell onto bipolar cell processes were first seen in mid-larval developmental stages.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 161
Author(s):  
Daniëlle Swinkels ◽  
Yannick Das ◽  
Sai Kocherlakota ◽  
Stefan Vinckier ◽  
Eric Wever ◽  
...  

Retinal degeneration is a common feature in peroxisomal disorders leading to blindness. Peroxisomes are present in the different cell types of the retina; however, their precise contribution to retinal integrity is still unclear. We previously showed that mice lacking the central peroxisomal β-oxidation enzyme, multifunctional protein 2 (MFP2), develop an early onset retinal decay including photoreceptor cell death. To decipher the function of peroxisomal β-oxidation in photoreceptors, we generated cell type selective Mfp2 knockout mice, using the Crx promotor targeting photoreceptors and bipolar cells. Surprisingly, Crx-Mfp2−/− mice maintained photoreceptor length and number until the age of 1 year. A negative electroretinogram was indicative of preserved photoreceptor phototransduction, but impaired downstream bipolar cell signaling from the age of 6 months. The photoreceptor ribbon synapse was affected, containing free-floating ribbons and vesicles with altered size and density. The bipolar cell interneurons sprouted into the ONL and died. Whereas docosahexaenoic acid levels were normal in the neural retina, levels of lipids containing very long chain polyunsaturated fatty acids were highly increased. Crx-Pex5−/− mice, in which all peroxisomal functions are inactivated in photoreceptors and bipolar cells, developed the same phenotype as Crx-Mfp2−/− mice. In conclusion, the early photoreceptor death in global Mfp2−/− mice is not driven cell autonomously. However, peroxisomal β-oxidation is essential for the integrity of photoreceptor ribbon synapses and of bipolar cells.


2000 ◽  
Vol 83 (6) ◽  
pp. 3473-3482 ◽  
Author(s):  
Fan Gao ◽  
Bruce R. Maple ◽  
Samuel M. Wu

Light-evoked currents in depolarizing and hyperpolarizing bipolar cells (DBCs and HBCs) were recorded under voltage-clamp conditions in living retinal slices of the larval tiger salamander. Responses to illumination at the center of the DBCs' and HBCs' receptive fields were mediated by two postsynaptic currents: Δ I C, a glutamate-gated cation current with a reversal potential near 0 mV, and Δ I Cl, a chloride current with a reversal potential near −60 mV. In DBCs Δ I C was suppressed byl-2-amino-4-phosphonobutyric acid (l-AP4), and in HBCs it was suppressed by 6,7-dinitroquinoxaline-2,3-dione (DNQX). In both DBCs and HBCs Δ I Cl was suppressed by imidazole-4-acetic acid (I4AA), a GABA receptor agonist and GABAC receptor antagonist. In all DBCs and HBCs examined, 10 μM I4AA eliminated Δ I Cl and the light-evoked current became predominately mediated by Δ I C. The addition of 20 μM l-AP4 to the DBCs or 50 μM DNQX to HBCs completely abolished Δ I C. Focal application of glutamate at the inner plexiform layer elicited chloride currents in bipolar cells by depolarizing amacrine cells that release GABA at synapses on bipolar cell axon terminals, and such glutamate-induced chloride currents in DBCs and HBCs could be reversibly blocked by 10 μM I4AA. These experiments suggest that the light-evoked, I4AA-sensitive chloride currents (Δ I Cl) in DBCs and HBCs are mediated by narrow field GABAergic amacrine cells that activate GABACreceptors on bipolar cell axon terminals. Picrotoxin (200 μM) or (1,2,5,6-tetrahydropyridine-4yl) methyphosphinic acid (TPMPA) (2 other GABAC receptor antagonists) did not block (but enhanced and broadened) the light-evoked Δ I Cl, although they decreased the chloride current induced by puff application of GABA or glutamate. The light response of narrow field amacrine cells were not affected by I4AA, but were substantially enhanced and broadened by picrotoxin. These results suggest that there are at least two types of GABACreceptors in bipolar cells: one exhibits stronger I4AA sensitivity than the other, but both can be partially blocked by picrotoxin. The GABA receptors in narrow field amacrine cells are I4AA insensitive and picrotoxin sensitive. The light-evoked Δ I Cl in bipolar cells are mediated by the more strongly I4AA-sensitive GABAC receptors. Picrotoxin, although acting as a partial GABAC receptor antagonist in bipolar cells, does not suppress Δ I Clbecause its presynaptic effects on amacrine cell light responses override its antagonistic postsynaptic actions.


1990 ◽  
Vol 64 (4) ◽  
pp. 1077-1088 ◽  
Author(s):  
P. A. Rutecki ◽  
F. J. Lebeda ◽  
D. Johnston

1. The epileptiform discharges in the CA3 region of the rat hippocampal slice produced by bath application of the potassium channel blocker tetraethylammonium (TEA) were investigated. The effects of a convulsant (5 mM) and subconvulsant (0.5 mM) concentration of TEA on the mossy fiber-evoked synaptic currents were studied by the use of voltage-clamp techniques to determine whether TEA, like 4-aminopyridine (4-AP), another potassium channel blocker and convulsant, increased both inhibitory and excitatory components of the synaptic response. 2. At extracellular potassium concentrations of 2.5 mM, TEA (5 mM) was found to produce spontaneously occurring epileptiform discharges that could be recorded extracellularly. The intracellular correlate of the epileptiform discharge, the paroxysmal depolarizing shift (PDS), could be reversed in polarity by depolarizing the membrane and was associated with a large increase in membrane conductance. These results suggest that a synaptically mediated potential underlies the generation of the epileptiform discharge. 3. The reversal potential for the PDS was dependent on the time, relative to the extracellularly recorded field discharge, at which the measurement was made. In current clamp the mean reversal potential of the PDS measured at the midpoint of the extracellular discharge was -3.3 +/- 2.9 (SE) mV (n = 9). The reversal potential of the PDS was considerably more negative when measured either before or after the midpoint of the extracellular discharge, suggesting the presence of an inhibitory synaptic component. In voltage clamp similar results were obtained and a large conductance change was found to be associated with the PDS. These results suggest that the synaptic conductance associated with the PDS has both inhibitory and excitatory components. 4. TEA increased significantly the mossy fiber-evoked, early-inhibitory conductance. A convulsant concentration (5 mM) increased the conductance measured 15 ms after the stimulus from 39.7 +/- 8.7 to 87.2 +/- 8.0 nS (n = 6). The reversal potential associated with the conductance depolarized from -68.3 +/- 3.4 to -58.3 +/- 4.0 mV after 5 mM TEA. A subconvulsant concentration of TEA (0.5 mM) also increased the conductance of the mossy fiber-evoked response at 15 ms after the stimulus from 49.5 +/- 3.1 to 63.1 +/- 6.1 nS (n = 4) without an associated shift in reversal potential. 5. The late-inhibitory component of the mossy fiber-evoked response, when present, was increased by 5 mM TEA and unchanged by 0.5 mM TEA. 6. The excitatory mossy fiber-evoked synaptic current was studied in the presence of picrotoxin and was found to be increased and prolonged by 5 mM TEA.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 76 (3) ◽  
pp. 2005-2019 ◽  
Author(s):  
W. A. Hare ◽  
W. G. Owen

1. It is widely believed that signals contributing to the receptive field surrounds of retinal bipolar cells pass from horizontal cells to bipolar cells via GABAergic synapses. To test this notion, we applied gamma-aminobutyric acid (GABA) agonists and antagonists to isolated, perfused retinas of the salamander Ambystoma tigrinum while recording intracellularly from bipolar cells, horizontal cells, and photoreceptors. 2. As we previously reported, administration of the GABA analogue D-aminovaleric acid in concert with picrotoxin did not block horizontal cell responses or the center responses of bipolar cells but blocked the surround responses of both on-center and off-center bipolar cells. 3. Surround responses were not blocked by the GABA, antagonists picrotoxin or bicuculline, the GABAB agonist baclofen or the GABAB antagonist phaclofen, and the GABAC antagonists picrotoxin or cis-4-aminocrotonic acid. Combinations of these drugs were similarly ineffective. 4. GABA itself activated a powerful GABA uptake mechanism in horizontal cells for which nipecotic acid is a competitive agonist. It also activated, both in horizontal cells and bipolar cells, large GABAA conductances that shunted light responses but that could be blocked by picrotoxin or bicuculline. 5. GABA, administered together with picrotoxin to block the shunting effect of GABAA activation, did not eliminate bipolar cell surround responses at concentrations sufficient to saturate the known types of GABA receptors. 6. Surround responses were not blocked by glycine or its antagonist strychnine, or by combinations of drugs designed to eliminate GABAergic and glycinergic pathways simultaneously. 7. Although we cannot fully discount the involvement of a novel GABAergic synapse, the simplest explanation of our findings is that the primary pathway mediating the bipolar cell's surround is neither GABAergic nor glycinergic.


1993 ◽  
Vol 70 (6) ◽  
pp. 2584-2595 ◽  
Author(s):  
P. Branchereau ◽  
J. Champagnat ◽  
M. Denavit-Saubie

1. Ionic conductances controlled by type A and type B cholecystokinin (CCK) receptors were studied in neurons of the rat nucleus tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMNV), using intracellular and whole-cell patch clamp recordings in current or voltage clamp configuration during bath application of agonists (CCK8, CCK4, BC 264) and antagonists. 2. CCKA receptor-related inhibition was associated with a membrane hyperpolarization and a decrease in input resistance that developed 2-6 min after the arrival of drug into the extracellular medium. These effects were induced by 5 nM CCK8 but not BC 264 and they were blocked by the CCKA antagonist, L-364,718, but not by the CCKB antagonist, L-365,260. 3. CCKA receptor-related inhibition was generated by a potassium current that reversed at a reversal potential E(rev) of -73 +/- 1 (mean +/- SE) mV with bathing potassium concentration [K+]o = 6 mM and at -88 +/- 1 with [K+]o = 3 mM, in agreement with the Nernst equation for potassium ions. 4. CCKB receptor-related excitation was associated with a membrane depolarization and an increase of the input resistance induced by the following agonists at threshold concentrations: CCK8 (0.2 nM) > or = BC 264 (0.4 nM) > CCK4 (10.9 nM). The increase of input resistance was abolished by L-365,260 and was maintained after blockade of the CCKA current by L-364,718. 5. CCKB receptor-related excitation, in the neurons (30% of cases) in which clear response reversal was observed, appeared to be generated by a decrease of a potassium conductance. Responses showed a reversal potential E(rev) of -68 +/- 4 mV with [K+]o = 6 mM and -89 +/- 1 mV with [K+]o = 3 mM, verifying predictions from the Nernst equation applied to potassium ions. However, in 70% of cases, clear reversal was not observed at membrane potentials negative to the theoretical potassium equilibrium potential EK. 6. In voltage clamp studies, CCK8 induced a 181 +/- 17 pA inward current associated with a 26 +/- 4% decrease in the instantaneous current (I(ins)) generated by hyperpolarizing voltage steps. This effect on I(ins) was demonstrated in the absence of effects on the outward noninactivating potassium current (IM) and on the inward noninactivating cationic current (IQ). 7. CCKB receptor-mediated excitation was not suppressed by cobalt, a blocker of calcium currents, and was not associated with a change of the calcium-dependent potassium current (IK(Ca)).(ABSTRACT TRUNCATED AT 400 WORDS)


1979 ◽  
Vol 73 (1) ◽  
pp. 73-90 ◽  
Author(s):  
T Saito ◽  
H Kondo ◽  
J I Toyoda

Properties of the depolarizing response of on-center bipolar cells to a light spot stimulus were studied in the carp retina. On-center bipolar cells were classified into two types, cone-dominant and rod-dominant, according to their major input from cones and rods. Cone-dominant bipolar cells responded to spectral light with the maximum amplitude near 625 nm, suggesting major input from red cones. The response was accompanied by a resistance increase and showed a reversal potential at -63 +/- 21 mV when the membrane was hyperpolarized by current. The results suggest that the photoresponse of cone-dominant cells is due to a decrease of gK and/or gCl, membrane conductances to potassium and chloride, respectively. Rod-dominant bipolar cells responded to spectral light with the maximum amplitude near 525 nm under scotopic conditions and near 625 nm under photopic conditions, providing evidence that they receive input from rods and red cones. In the scoptopic condition their response was accompanied by a resistance decrease and showed a reversal potential at 29 +/- 13 mV, whereas in the photopic condition the response in most of them was accompanied by a resistance increase, at least in their part and showed a reversal at -53 +/- 11 mV. The results suggest that the photoresponse activated by rod input is due to an increase in gNa. In the mesopic condition rod-dominant cells showed complex electrical membrane properties as the result of electric interaction between the above two differnt ionic mechanisms activated by rod and cone inputs.


Sign in / Sign up

Export Citation Format

Share Document