scholarly journals Genome wide analysis reveals genetic divergence between Goldsinny wrasse populations 

2020 ◽  
Author(s):  
Eeva Jansson ◽  
Francois Besnier ◽  
Ketil Malde ◽  
Carl André ◽  
Geir Dahle ◽  
...  

Abstract Background Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse ( Ctenolabrus rupestris ) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies. Results After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33 235 genome wide SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global F ST among these populations was 0.015–0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and ~1% within Scandinavia. SNPs showing large divergence ( F ST >0.15) were picked as candidate diagnostic markers for population assignment. 173 of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species’ Scandinavian distribution range. 69 of these SNPs were significantly ( p <0.05) differentiated (mean F ST_173_loci = 0.065, F ST_69_loci = 0.140). Using these validated SNPs, individuals were assigned with high probability (≥ 94%) to their populations of origin. Conclusions Goldsinny wrasse displays a highly polymorphic genome, and substantial population genomic structure. Diversifying selection likely affects population structuring globally and within Scandinavia. The diagnostic loci identified now provide a promising and cost-efficient tool to investigate goldsinny wrasse populations further.

BMC Genetics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Eeva Jansson ◽  
Francois Besnier ◽  
Ketil Malde ◽  
Carl André ◽  
Geir Dahle ◽  
...  

Abstract Background Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies. Results After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33,235 SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global FST among these populations was 0.015–0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and ~ 1% within Scandinavia. SNPs showing large divergence (FST > 0.15) were picked as candidate diagnostic markers for population assignment. One hundred seventy-three of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species’ Scandinavian distribution range. Sixty-nine of these SNPs were significantly (p < 0.05) differentiated (mean FST_173_loci = 0.065, FST_69_loci = 0.140). Using these validated SNPs, individuals were assigned with high probability (≥ 94%) to their populations of origin. Conclusions Goldsinny wrasse displays a highly polymorphic genome, and substantial population genomic structure. Diversifying selection likely affects population structuring globally and within Scandinavia. The diagnostic loci identified now provide a promising and cost-efficient tool to investigate goldsinny wrasse populations further.


2020 ◽  
Author(s):  
Eeva Jansson ◽  
Francois Besnier ◽  
Ketil Malde ◽  
Carl André ◽  
Geir Dahle ◽  
...  

Abstract Background: Marine fish populations are often characterized by high levels of gene flow and correspondingly low genetic divergence. This presents a challenge to define management units. Goldsinny wrasse (Ctenolabrus rupestris) is a heavily exploited species due to its importance as a cleaner-fish in commercial salmonid aquaculture. However, at the present, the population genetic structure of this species is still largely unresolved. Here, full-genome sequencing was used to produce the first genomic reference for this species, to study population-genomic divergence among four geographically distinct populations, and, to identify informative SNP markers for future studies. Results: After construction of a de novo assembly, the genome was estimated to be highly polymorphic and of ~600Mbp in size. 33 235 SNPs were thereafter selected to assess genomic diversity and differentiation among four populations collected from Scandinavia, Scotland, and Spain. Global FST among these populations was 0.015–0.092. Approximately 4% of the investigated loci were identified as putative global outliers, and ~1% within Scandinavia. SNPs showing large divergence (FST>0.15) were picked as candidate diagnostic markers for population assignment. 173 of the most diagnostic SNPs between the two Scandinavian populations were validated by genotyping 47 individuals from each end of the species’ Scandinavian distribution range. 69 of these SNPs were significantly (p<0.05) differentiated (mean FST_173_loci=0.065, FST_69_loci=0.140). Using these validated SNPs, individuals were assigned with high probability (≥ 94%) to their populations of origin.Conclusions: Goldsinny wrasse displays a highly polymorphic genome, and substantial population genomic structure. Diversifying selection likely affects population structuring globally and within Scandinavia. The diagnostic loci identified now provide a promising and cost-efficient tool to investigate goldsinny wrasse populations further.


2021 ◽  
Author(s):  
Zachary L Nikolakis ◽  
Richard Orton ◽  
Brian I Crother

Understanding the processes and mechanisms that promote lineage divergence is a central goal in evolutionary biology. For instance, studies investigating the spatial distribution of genomic variation often highlight biogeographic barriers underpinning geographic isolation, as well as patterns of isolation by environment and isolation by distance that can also lead to lineage divergence. However, the patterns and processes that shape genomic variation and drive lineage divergence may be taxa-specific, even across closely related taxa co-occurring within the same biogeographic region. Here, we use molecular data in the form of ultra-conserved elements (UCEs) to infer the evolutionary relationships and population genomic structure of the Eastern Pinesnake complex (Pituophis melanoleucus) – a polytypic wide-ranging species that occupies much of the Eastern Nearctic. In addition to inferring evolutionary relationships, population genomic structure, and gene flow, we also test relationships between genomic diversity and putative barriers to dispersal, environmental variation, and geographic distance. We present results that reveal shallow population genomic structure and ongoing gene flow, despite an extensive geographic range that transcends geographic features found to reduce gene flow among many taxa, including other squamate reptiles within the Eastern Nearctic. Further, our results indicate that the observed genomic diversity is spatially distributed as a pattern of isolation by distance and suggest that the current subspecific taxonomy do not adhere to independent lineages, but rather, show a significant amount of admixture across the entire P. melanoleucus range.


2021 ◽  
Author(s):  
Kyle D Gustafson ◽  
Roderick B Gagne ◽  
Michael R Buchalski ◽  
T Winston Vickers ◽  
Seth PD Riley ◽  
...  

Urbanization is decreasing wildlife habitat and connectivity worldwide, including for apex predators, such as the puma (Puma concolor). Puma populations along California's central and southern coastal habitats have experienced rapid fragmentation from development, leading to calls for demographic and genetic management. To address urgent conservation genomic concerns, we used double-digest restriction-site associated DNA (ddRAD) sequencing to analyze 16,285 genome-wide single-nucleotide polymorphisms (SNPs) from 401 broadly sampled pumas. Our analyses indicated support for 4–10 geographically nested, broad- to fine-scale genetic clusters. At the broadest scale, the 4 genetic clusters had high genetic diversity and exhibited low linkage disequilibrium, indicating pumas have retained statewide genomic diversity. However, multiple lines of evidence indicated substructure, including 10 fine-scale genetic clusters, some of which exhibited allelic fixation and linkage disequilibrium. Fragmented populations along the Southern Coast and Central Coast had particularly low genetic diversity and strong linkage disequilibrium, indicating genetic drift and close inbreeding. Our results demonstrate that genetically at-risk populations are typically nested within a broader-scale group of interconnected populations that collectively retains high genetic diversity and heterogeneous fixations. Thus, extant variation at the broader scale has potential to restore diversity to local populations if management actions can enhance vital gene flow and recombine locally sequestered genetic diversity. These state- and genome-wide results are critically important for science-based conservation and management practices. Our broad- and fine-scale population genomic analysis highlights the information that can be gained from population genomic studies aiming to provide guidance for fragmented population conservation management.


2021 ◽  
Vol 1 (19) ◽  
pp. 335-338
Author(s):  
V.V. Kalashnikov ◽  
L.A. Khrabrova ◽  
N.V. Blokhina ◽  
T.V. Kalashnikova

For the first time, a genome-wide study was conducted for 6 native breeds (Kabardian, Vyatka, zabaikalian, Yakut) with unique adaptive qualities and 2 cultural breeds that are strictly selected for multidirectional characteristics. Data on the state of the genetic structure of breeds were obtained. The phylogenetic relationships between breeds were studied, the ancestral groups that participated in the formation of the breed structure were determined, and the influence of factory improver breeds on the microevolution of local breeds was estimated. the results of the research are correlated with the freely available results of the genome-wide analysis of foreign horse populations and breeds. The ways of identifying complexes that characterize the severity of selected traits in breeds with different directions of use are outlined. The high efficiency of using the obtained results to determine belonging to a particular breed is determined. A database of mitochondrial DNA and Y-chromosome haplotypes was created to conduct a retrospective analysis of the origin and refinement of breeding records in the system of centralized breeding records in horse breeding. As additional markers, we used targeted SNPs that characterize the severity of selected traits


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0259124
Author(s):  
Damian C. Lettoof ◽  
Vicki A. Thomson ◽  
Jari Cornelis ◽  
Philip W. Bateman ◽  
Fabien Aubret ◽  
...  

Urbanisation alters landscapes, introduces wildlife to novel stressors, and fragments habitats into remnant ‘islands’. Within these islands, isolated wildlife populations can experience genetic drift and subsequently suffer from inbreeding depression and reduced adaptive potential. The Western tiger snake (Notechis scutatus occidentalis) is a predator of wetlands in the Swan Coastal Plain, a unique bioregion that has suffered substantial degradation through the development of the city of Perth, Western Australia. Within the urban matrix, tiger snakes now only persist in a handful of wetlands where they are known to bioaccumulate a suite of contaminants, and have recently been suggested as a relevant bioindicator of ecosystem health. Here, we used genome-wide single nucleotide polymorphism (SNP) data to explore the contemporary population genomics of seven tiger snake populations across the urban matrix. Specifically, we used population genomic structure and diversity, effective population sizes (Ne), and heterozygosity-fitness correlations to assess fitness of each population with respect to urbanisation. We found that population genomic structure was strongest across the northern and southern sides of a major river system, with the northern cluster of populations exhibiting lower heterozygosities than the southern cluster, likely due to a lack of historical gene flow. We also observed an increasing signal of inbreeding and genetic drift with increasing geographic isolation due to urbanisation. Effective population sizes (Ne) at most sites were small (< 100), with Ne appearing to reflect the area of available habitat rather than the degree of adjacent urbanisation. This suggests that ecosystem management and restoration may be the best method to buffer the further loss of genetic diversity in urban wetlands. If tiger snake populations continue to decline in urban areas, our results provide a baseline measure of genomic diversity, as well as highlighting which ‘islands’ of habitat are most in need of management and protection.


Author(s):  
М. Халюзова ◽  
M. Khalyuzova ◽  
М. Цыганов ◽  
M. Tsyganov ◽  
Д. Исубакова ◽  
...  

Purpose: To conduct genome wide association study of the association of 750,000 SNPs and an increased frequency of different types of chromosomal aberrations, induced by chronic irradiation in the dose range of 100–300 mSv. Material and methods: The study was conducted among Siberian Group of Chemical Enterprises healthy employees (n = 37) exposed to professional external γ-radiation in a dose range of 100–300 mSv. The de novo induced CNVs were previously detected in these persons. Mean dose – 188.8 ± 8.3 mSv, median – 185 mSv, interquartile range – 147.8–218.7 mSv, min – 103.4 mSv, max – 295.8 mSv. Genotyping of DNA samples from 37 employees was carried out by microarray CytoScan™ HD Array (Affymetrix, USA), containing 750,000 SNP-markers of 36,000 genes. The standard cytogenetic analysis was performed in the entire examined group. Results: We analyzed the association of these SNPs with the frequencies of aberrant cells and following chromosomal aberrations: single chromatid fragments, chromatid exchanges, paired fragments, dicentrics, rings, and translocations. We have found that 8 SNPs (rs10779468, rs158735, rs158710, rs158712, rs11131536, rs528170, rs9533572, rs10512439) are associated with the frequency of aberrant cells. Conclusion: We have discovered polymorphic variants that are associated with an increased frequency of aberrant cells in workers of Siberian Group of Chemical Enterprises exposed to irradiation at a dose of 100–300 mSv. This polymorphic variants can be considered as potential markers of individual radiosensitivity. To confirm identified associations, further validation studies on an extended sample of people exposed to radiation are needed.


Sign in / Sign up

Export Citation Format

Share Document