scholarly journals Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses

2020 ◽  
Author(s):  
Pawel Sega ◽  
Katarzyna Kruszka ◽  
Dawid Bielewicz ◽  
Wojciech Karlowski ◽  
Przemyslaw Nuc ◽  
...  

Abstract Background: Small RNAs (sRNAs) are 18–24 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. Results: In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, p-value < 0.05) are represented by 162 (44.88 % of total differentially expressed small RNAs) molecules in shoot and 138 (7.14 %) in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, Bonferroni correction). In roots, a more abundant and diverse set of other sRNAs (1796 unique sequences, 0.13 % from total unique reads obtained under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (199 unique sequences, 0.01 %). More than 80 % of differentially expressed other sRNAs are upregulated in both organs. Additionally, in barley shoots, upregulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3’-5’ exonuclease). This suggests that most small RNAs may be generated upon endonucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identify 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools.Conclusions: Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi scarcity through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pawel Sega ◽  
Katarzyna Kruszka ◽  
Dawid Bielewicz ◽  
Wojciech Karlowski ◽  
Przemyslaw Nuc ◽  
...  

Abstract Background Small RNAs (sRNAs) are 20–30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. Results In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, Bonferroni adjusted p-value < 0.05) are represented by 15 molecules in shoot and 13 in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13% from the average of the unique small RNA expressed under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01%). More than 80% of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3′-5′ exonuclease). This suggests that most small RNAs may be generated upon nucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools. Conclusions Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.


2020 ◽  
Author(s):  
Pawel Sega ◽  
Katarzyna Kruszka ◽  
Dawid Bielewicz ◽  
Wojciech Karlowski ◽  
Przemyslaw Nuc ◽  
...  

Abstract Background: Small RNAs (sRNAs) are 20–30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. Results: In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, p-value < 0.05) are represented by 162 (44.88 % of total differentially expressed small RNAs) molecules in shoot and 138 (7.14 %) in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13 % from total unique reads obtained under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01 %). More than 80 % of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3’-5’ exonuclease). This suggests that most small RNAs may be generated upon endonucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools.Conclusions: Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Lei Yan ◽  
Liang Su ◽  
Rui Li ◽  
Hao Li ◽  
Jianrong Bai ◽  
...  

Phosphate (Pi) deficiency in soil can have severe impacts on the growth, development, and production of maize worldwide. In this study, a cDNA-sequence-related amplified polymorphism (cDNA-SRAP) transcript profiling technique was used to evaluate the gene expression in leaves and roots of maize under Pi stress for seven days. A total of 2494 differentially expressed fragments (DEFs) were identified in response to Pi starvation with 1202 and 1292 DEFs in leaves and roots, respectively, using a total of 60 primer pairs in the cDNA-SRAP analysis. These DEFs were categorized into 13 differential gene expression patterns. Results of sequencing and functional analysis showed that 63 DEFs (33 in leaves and 30 in roots) were annotated to a total of 54 genes involved in diverse groups of biological pathways, including metabolism, photosynthesis, signal transduction, transcription, transport, cellular processes, genetic information, and organismal system. This study demonstrated that (1) the cDNA-SRAP transcriptomic profiling technique is a powerful method to analyze differential gene expression in maize showing advantageous features among several transcriptomic methods; (2) maize undergoes a complex adaptive process in response to low Pi stress; and (3) a total of seven differentially expressed genes were identified in response to low Pi stress in leaves or roots of maize and could be used in the genetic modification of maize.


2020 ◽  
Author(s):  
Fuhua Fan ◽  
Xianwen Shang ◽  
Guijie Ding ◽  
Zijing Zhou ◽  
Jianhui Tan

Abstract Background Masson pine ( Pinus massoniana ) is primarily present in subtropical and tropical areas of China, which are severely deficient in inorganic phosphate (Pi). Although some studies identified transcriptomic and proteomic responses to Pi deficiency in Masson pine seedlings, different tissues, especially the roots, that exhibit primary responses to low-Pi stress, have not been well studied. To shed further light on the complex responses of Masson pine to Pi deficiency, a spatiotemporal experiment was performed to identify differentially expressed mRNAs and miRNAs under Pi-deficient conditions. Results Spatiotemporal analyses of 72 RNA sequencing libraries provided a comprehensive overview of the dynamic responses of Masson pine to low-Pi stress. Differentially expressed gene analysis revealed several high-affinity phosphate transporters and nitrate transporters, reflecting the crosstalk between nitrate and Pi homeostasis in plants. The MYB family was the most abundant transcription factor family identified. miRNA differential expression analysis identified several families that were associated with Pi deficiency, such as miR399. In addition, some other families, including novel miRNA families in Masson pine, were dramatically changed in response to Pi starvation. GO and KEGG analyses of these mRNAs and targets of miRNAs indicated that metabolic processes were most enriched under Pi deficiency. Conclusions This study provided abundant spatiotemporal transcriptomic information to functionally dissect the response of Masson pine seedlings to Pi deficiency, which will aid in further elucidation of the biological regulatory mechanisms of pines in response to low-Pi stress.


2018 ◽  
Vol 19 (7) ◽  
pp. 2145 ◽  
Author(s):  
Houqing Zeng ◽  
Xiajun Zhang ◽  
Xin Zhang ◽  
Erxu Pi ◽  
Liang Xiao ◽  
...  

Low phosphate (Pi) availability is an important limiting factor affecting soybean production. However, the underlying molecular mechanisms responsible for low Pi stress response and tolerance remain largely unknown, especially for the early signaling events under low Pi stress. Here, a genome-wide transcriptomic analysis in soybean leaves treated with a short-term Pi-deprivation (24 h) was performed through high-throughput RNA sequencing (RNA-seq) technology. A total of 533 loci were found to be differentially expressed in response to Pi deprivation, including 36 mis-annotated loci and 32 novel loci. Among the differentially expressed genes (DEGs), 303 were induced and 230 were repressed by Pi deprivation. To validate the reliability of the RNA-seq data, 18 DEGs were randomly selected and analyzed by quantitative RT-PCR (reverse transcription polymerase chain reaction), which exhibited similar fold changes with RNA-seq. Enrichment analyses showed that 29 GO (Gene Ontology) terms and 8 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were significantly enriched in the up-regulated DEGs and 25 GO terms and 16 KEGG pathways were significantly enriched in the down-regulated DEGs. Some DEGs potentially involved in Pi sensing and signaling were up-regulated by short-term Pi deprivation, including five SPX-containing genes. Some DEGs possibly associated with water and nutrient uptake, hormonal and calcium signaling, protein phosphorylation and dephosphorylation and cell wall modification were affected at the early stage of Pi deprivation. The cis-elements of PHO (phosphatase) element, PHO-like element and P responsive element were present more frequently in promoter regions of up-regulated DEGs compared to that of randomly-selected genes in the soybean genome. Our transcriptomic data showed an intricate network containing transporters, transcription factors, kinases and phosphatases, hormone and calcium signaling components is involved in plant responses to early Pi deprivation.


Genes ◽  
2017 ◽  
Vol 8 (11) ◽  
pp. 333 ◽  
Author(s):  
Çağdaş Göktaş ◽  
Hatice Yiğit ◽  
Mehmet Coşacak ◽  
Bünyamin Akgül

Author(s):  
Katarzyna Piórkowska ◽  
Kacper Żukowski ◽  
Katarzyna Ropka-Molik ◽  
Mirosław Tyra

Obesity is a problem in the last decades since the development of different technologies forced the submission of a faster pace of life, resulting in nutrition style changes. In turn, domestic pigs are an excellent animal model in recognition of adiposity-related processes, corresponding to the size of individual organs, the distribution of body fat in the organism, and similar metabolism. The present study applied the next-generation sequencing method to identify adipose tissue (AT) transcriptomic signals related to increased fat content by identifying differentially expressed genes (DEGs), included long-non coding RNA molecules. The Freiburg RNA tool was applied to recognise predicting hybridisation energy of RNA-RNA interactions. The results indicated several long non-coding RNAs (lncRNAs) whose expression was significantly positively or negatively associated with fat deposition. lncRNAs play an essential role in regulating gene expression by sponging miRNA, binding transcripts, facilitating translation, or coding other smaller RNA regulatory elements. In the pig fat tissue of obese group, increased expression of lncRNAs corresponding to human MALAT1 was observed that previously recognised in the obesity-related context. Moreover, hybridisation energy analyses pinpointed numerous potential interactions between identified differentially expressed lncRNAs, and obesity-related genes and miRNAs expressed in AT.


Author(s):  
Abbas Saidi ◽  
Zahra Hajibarat ◽  
Zohreh Hajibarat

Tomato is considered as an important commercial crop and protective food and it’s yield is extremely affected by different pathogens. Such harmful pathogens severely affecting tomato include Phytophthora infestans (oomycete) and Colletotrichum coccodes (fungi). In this study, gene expression analysis was performed using the microarray datasets available in the public database to investigate differentially expressed genes DEGs under developmental and anatomy conditions and consequently constructing the predicted PPI (Protein-protein interaction) network. Here, a comparison of abundances revealed that 51 genes were differentially expressed due to oomycete and fungi stresses in tomato. Expression analysis revealed that Solyc06g007510.3 was up-regulated whereas Solyc05g008850.3 was down-regulated in all developmental stages and anatomy conditions to manage auxin metabolism under fungi and oomycete infections in tomato. The gene ontology included cellular metabolic and organic substance metabolic processes, cellular biosynthetic, organic substance biosynthetic, and cellular macromolecule metabolic process, chloroplast, intracellular membrane-bounded organelle, heterocyclic compound binding, organic cyclic compound binding, ion binding, binding, and catalytic activity. Analysis of cis-elements illustrated that 12 most general cis-regulatory elements (CATT-box, TATA-box, MYB, MYC, ABRE, G-box, Box 4, AAGAA-motif, MBS, as-1, TGACG-motif, and CGTCA-motif) were identified in promoter region. The highest frequency of cis-elements included CATT-box and TATA-box in response to the pathogens at different growth stages in tomato. Our findings can provide a better insight to the regulatory mechanisms involved in response to fungi and oomycete infection in tomato which can aid to improve the efficiency of developing tomato varieties.


Sign in / Sign up

Export Citation Format

Share Document