scholarly journals Temporary Nature-based Carbon Removal Can Lower Peak Warming in a Well-below 2°C Scenario

Author(s):  
H. Damon Matthews ◽  
Kirsten Zickfeld ◽  
Mitchell Dickau ◽  
Alexander MacIsaac ◽  
Sabine Mathesius ◽  
...  

Abstract There is growing recognition that meeting the climate objectives of the Paris Agreement will require the world to achieve net-zero carbon dioxide emissions around or before mid-century1–4. Natural climate solutions (NCS), which aim to preserve and enhance carbon storage in terrestrial or aquatic ecosystems5,6, are increasingly being evoked as a potential contributor to net-zero emissions targets7,8. However, there is a risk that any carbon that we succeed in storing in land-based systems could be subsequently lost back to the atmosphere as a result of either climate-related or human-caused disturbances such as wildfire or deforestation9–12. Here, we show that temporary NCS-based carbon sequestration has the potential to decrease the peak temperature increase, but only if implemented alongside an ambitious mitigation scenario where fossil fuel CO2 emissions were decreased to net-zero during the time that NCS-sequestered carbon remained stored. We also demonstrate the importance of non-CO2 climate effects of NCS implementation, which have the potential to counter a substantial portion of the climate effect of carbon sequestration. Our results suggest that there is some climate benefit associated with temporary NCS, but only if implemented as a complement (and not an alternative) to ambitious fossil fuel CO2 emissions reductions.

2021 ◽  
Vol 12 (2) ◽  
pp. 86
Author(s):  
Hajo Ribberink ◽  
Yinghai Wu ◽  
Kathleen Lombardi ◽  
Libing Yang

The medium- and heavy-duty (MD/HD) vehicle sector is a large emitter of greenhouse gases. It will require drastic emissions reductions to realize a net-zero carbon future. This study conducts fourteen short feasibility investigations in the Canadian context to evaluate the merits of battery electric or hydrogen fuel cell alternatives to conventional city buses, inter-city buses, school buses, courier vehicles (step vans), refuse trucks, long-haul trucks and construction vehicles. These “clean transportation alternatives” were evaluated for practicality, economics, and emission reductions in comparison to their conventional counterparts. Conclusions were drawn on which use cases would be best suited for accelerating the transformation of the MD/HD sector.


2021 ◽  
pp. 084047042110036
Author(s):  
Neil H. Ritchie

The global pandemic has taught us that we can focus the attention of the healthcare system on a clear intention when there is a looming threat. Climate action is required from multiple stakeholders particularly private sector suppliers in order to achieve the net-zero carbon emission by 2050 goal established by the Canadian government. Also building climate resilience among healthcare institutions and their supply chains is urgently needed, as they are already affected by a changing climate. By adopting a circular economy framework, the industry can move away from the current damaging take, make waste economic model and adopt a more sustainable model characterized by designing out waste and pollution, keeping products and materials in use, and regenerating natural systems. Health leaders can adopt sharing platforms, product as a service, reduce single use products, encourage extended producer responsibility, and value-based procurement in order to further these aims.


2014 ◽  
Vol 7 (5) ◽  
pp. 1901-1918 ◽  
Author(s):  
J. Ray ◽  
V. Yadav ◽  
A. M. Michalak ◽  
B. van Bloemen Waanders ◽  
S. A. McKenna

Abstract. The characterization of fossil-fuel CO2 (ffCO2) emissions is paramount to carbon cycle studies, but the use of atmospheric inverse modeling approaches for this purpose has been limited by the highly heterogeneous and non-Gaussian spatiotemporal variability of emissions. Here we explore the feasibility of capturing this variability using a low-dimensional parameterization that can be implemented within the context of atmospheric CO2 inverse problems aimed at constraining regional-scale emissions. We construct a multiresolution (i.e., wavelet-based) spatial parameterization for ffCO2 emissions using the Vulcan inventory, and examine whether such a~parameterization can capture a realistic representation of the expected spatial variability of actual emissions. We then explore whether sub-selecting wavelets using two easily available proxies of human activity (images of lights at night and maps of built-up areas) yields a low-dimensional alternative. We finally implement this low-dimensional parameterization within an idealized inversion, where a sparse reconstruction algorithm, an extension of stagewise orthogonal matching pursuit (StOMP), is used to identify the wavelet coefficients. We find that (i) the spatial variability of fossil-fuel emission can indeed be represented using a low-dimensional wavelet-based parameterization, (ii) that images of lights at night can be used as a proxy for sub-selecting wavelets for such analysis, and (iii) that implementing this parameterization within the described inversion framework makes it possible to quantify fossil-fuel emissions at regional scales if fossil-fuel-only CO2 observations are available.


Radiocarbon ◽  
2021 ◽  
pp. 1-9
Author(s):  
Túlio César Aguiar Silva ◽  
Carla Carvalho ◽  
Bruno Libardoni ◽  
Kita Macario ◽  
Felippe Braga de Lima ◽  
...  

ABSTRACT Fossil fuels are of utmost importance to the world we live in today. However, their use can cause major impacts on the environment, especially on water resources. In this regard, algae have been intensively used as a strategy for remediation and monitoring of environmental pollution due to its efficient absorption of contaminants. In this work, samples of seaweed collected in Niterói/RJ—contaminated with kerosene and diesel—were analyzed by radiocarbon (14C) accelerator mass spectrometry (AMS) and by n-alkane quantification with gas chromatography to evaluate bioaccumulation in function of the dosage of contaminants. The biogenic content measured by radiocarbon analysis resulted in 95.6% for algae contaminated with 10 mL of kerosene and 67.6% for algae contaminated with 10 mL of diesel. The maximum intensity of n-C17 n-alkane in algae with 5 mL, 10 mL, and 15 mL of diesel was 768.2, 1878.1, and 5699.2 ng.g-1, respectively. While the maximum concentration of n-C27 in algae with 5 mL, 10 mL and 15 mL of kerosene was 3.3, 35.9, and 150.3 ng.g-1. We concluded that, for both contaminants, their incorporation into algae increases as the contamination dosage increases, making this methodology an effective technique for monitoring and remediation of urban aquatic ecosystems.


2021 ◽  
Vol 7 (23) ◽  
pp. eabd6034
Author(s):  
C. Ronnie Drever ◽  
Susan C. Cook-Patton ◽  
Fardausi Akhter ◽  
Pascal H. Badiou ◽  
Gail L. Chmura ◽  
...  

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada’s goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.


2020 ◽  
Vol 35 (7) ◽  
pp. 627-634
Author(s):  
Karen Turner ◽  
Antonios Katris ◽  
Julia Race

Many nations have committed to midcentury net zero carbon emissions targets in line with the 2015 Paris Agreement. These require systemic transition in how people live and do business in different local areas and regions within nations. Indeed, in recognition of the climate challenge, many regional and city authorities have set their own net zero targets. What is missing is a grounded principles framework to support what will inevitably be a range of broader public policy actions, which must in turn consider pathways that are not only technically, but economically, socially and politically feasible. Here, we attempt to stimulate discussion on this issue. We do so by making an initial proposition around a set of generic questions that should challenge any decarbonisation action, using the example of carbon capture and storage to illustrate the importance and complexity of ensuring feasibility of actions in a political economy arena. We argue that this gives rise to five fundamental ‘Net Zero Principles’ around understanding of who really pays and gains, identifying pathways that deliver growing and equitable prosperity, some of which can deliver near-term economic returns, while avoiding outcomes that simply involve ‘off-shoring’ of emissions, jobs and gross domestic product.


2021 ◽  
Vol 42 (3) ◽  
pp. 349-369
Author(s):  
Robert Cohen ◽  
Karl Desai ◽  
Jennifer Elias ◽  
Richard Twinn

The UKGBC Net Zero Carbon Buildings Framework was published in April 2019 following an industry task group and extensive consultation process. The framework acts as guidance for achieving net zero carbon for operational energy and construction emissions, with a whole life carbon approach to be developed in the future. In consultation with industry, further detail and stricter requirements are being developed over time. In October 2019, proposals were set out for industry consultation on minimum energy efficiency targets for new and existing commercial office buildings seeking to achieve net zero carbon status for operational energy today, based on the performance levels that all buildings will be required to achieve by 2050. This was complemented by modelling work undertaken by the LETI network looking into net zero carbon requirements for new buildings. In January 2020 UKGBC published its guidance on the levels of energy performance that offices should target to achieve net zero and a trajectory for getting there by 2035. This paper describes the methodology behind and industry perspectives on UKGBC’s proposals which aim to predict the reduction in building energy intensity required if the UK’s economy is to be fully-powered by zero carbon energy in 2050. Practical application: Many developers and investors seeking to procure new commercial offices or undertake major refurbishments of existing offices are engaging with the ‘net zero carbon’ agenda, now intrinsic to the legislative framework for economic activity in the UK. A UKGBC initiative effectively filled a vacuum by defining a set of requirements including energy efficiency thresholds for commercial offices in the UK to be considered ‘net zero carbon’. This paper provides all stakeholders with a detailed justification for the level of these thresholds and what might be done to achieve them. A worked example details one possible solution for a new office.


Sign in / Sign up

Export Citation Format

Share Document