scholarly journals Deep Learning-Based Fast TOF-PET Image Reconstruction Using Direction Information

Author(s):  
Kibo Ote ◽  
Fumio Hashimoto

Abstract Deep learning has attracted attention for positron emission tomography (PET) image reconstruction task, however, it remains necessary to further improve the image quality. In this study, we propose a novel CNN-based fast time-of-flight PET (TOF-PET) image reconstruction method to fully utilize the direction information of coincidence events. The proposed method inputs view-grouped histo-images into a 3D CNN as a multi-channel image to use the direction information of coincidence events. We evaluated the proposed method using Monte Carlo simulation data obtained from a digital brain phantom. Compared to the case without it, when using direction information, the peak signal-to-noise ratio and structural similarity were improved by 1.2 dB and 0.02, at a coincidence time resolution of 300 ps. The calculation times of the proposed method were significantly faster than the conventional iterative reconstruction. These results indicate that the proposed method improves both the speed and image quality of TOF-PET image reconstruction.

2021 ◽  
Vol 10 (6) ◽  
pp. 205846012110239
Author(s):  
Nobuo Kashiwagi ◽  
Hisashi Tanaka ◽  
Yuichi Yamashita ◽  
Hiroto Takahashi ◽  
Yoshimori Kassai ◽  
...  

Background Several deep learning-based methods have been proposed for addressing the long scanning time of magnetic resonance imaging. Most are trained using brain 3T magnetic resonance images, but is unclear whether performance is affected when applying these methods to different anatomical sites and at different field strengths. Purpose To validate the denoising performance of deep learning-based reconstruction method trained by brain and knee 3T magnetic resonance images when applied to lumbar 1.5T magnetic resonance images. Material and Methods Using a 1.5T scanner, we obtained lumber T2-weighted sequences in 10 volunteers using three different scanning times: 228 s (standard), 119 s (double-fast), and 68 s (triple-fast). We compared the images obtained by the standard sequence with those obtained by the deep learning-based reconstruction-applied faster sequences. Results Signal-to-noise ratio values were significantly higher for deep learning-based reconstruction-double-fast than for standard and did not differ significantly between deep learning-based reconstruction-triple-fast and standard. Contrast-to-noise ratio values also did not differ significantly between deep learning-based reconstruction-triple-fast and standard. Qualitative scores for perceived signal-to-noise ratio and overall image quality were significantly higher for deep learning-based reconstruction-double fast and deep learning-based reconstruction-triple-fast than for standard. Average scores for sharpness, contrast, and structure visibility were equal to or higher for deep learning-based reconstruction-double-fast and deep learning-based reconstruction-triple-fast than for standard, but the differences were not statistically significant. The average scores for artifact were lower for deep learning-based reconstruction-double-fast and deep learning-based reconstruction-triple-fast than for standard, but the differences were not statistically significant. Conclusion The deep learning-based reconstruction method trained by 3T brain and knee images may reduce the scanning time of 1.5T lumbar magnetic resonance images by one-third without sacrificing image quality.


2021 ◽  
pp. 028418512110358
Author(s):  
Aurélien Delabie ◽  
Roger Bouzerar ◽  
Raphaël Pichois ◽  
Xavier Desdoit ◽  
Jérémie Vial ◽  
...  

Background Patients with urolithiasis undergo radiation overexposure from computed tomography (CT) scans. Improvement of image reconstruction is necessary for radiation dose reduction. Purpose To evaluate a deep learning-based reconstruction algorithm for CT (DLIR) in the detection of urolithiasis at low-dose non-enhanced abdominopelvic CT. Material and Methods A total of 75 patients who underwent low-dose abdominopelvic CT for urolithiasis were retrospectively included. Each examination included three reconstructions: DLIR; filtered back projection (FBP); and hybrid iterative reconstruction (IR; ASiR-V 70%). Image quality was subjectively and objectively assessed using attenuation and noise measurements in order to calculate the signal-to-noise ratio (SNR), absolute contrast, and contrast-to-noise ratio (CNR). Attenuation of the largest stones were also compared. Detectability of urinary stones was assessed by two observers. Results Image noise was significantly reduced with DLIR: 7.2 versus 17 and 22 for ASiR-V 70% and FBP, respectively. Similarly, SNR and CNR were also higher compared to the standard reconstructions. When the structures had close attenuation values, contrast was lower with DLIR compared to ASiR-V. Attenuation of stones was also lowered in the DLIR series. Subjective image quality was significantly higher with DLIR. The detectability of all stones and stones >3 mm was excellent with DLIR for the two observers (intraclass correlation [ICC] = 0.93 vs. 0.96 and 0.95 vs. 0.99). For smaller stones (<3 mm), results were different (ICC = 0.77 vs. 0.86). Conclusion For low-dose abdominopelvic CT, DLIR reconstruction exhibited image quality superior to ASiR-V and FBP as well as an excellent detection of urinary stones.


2020 ◽  
Vol 10 (22) ◽  
pp. 8089
Author(s):  
Panpan Chen ◽  
Chengcheng Liu ◽  
Ting Feng ◽  
Yong Li ◽  
Dean Ta

Photoacoustic (PA) imaging can provide both chemical and micro-architectural information for biological tissues. However, photoacoustic imaging for bone tissue remains a challenging topic due to complicated ultrasonic propagations in the porous bone. In this paper, we proposed a post-processing method based on the convolution neural network (CNN) to improve the image quality of PA bone imaging in a numerical model. To be more adaptive for imaging bone samples with complex structure, an attention block U-net (AB-U-Net) network was designed from the standard U-net by integrating the attention blocks in the feature extraction part. The k-wave toolbox was used for the simulation of photoacoustic wave fields, and then the direct reconstruction algorithm—time reversal was adopted for generating a dataset of deep learning. The performance of the proposed AB-U-Net network on the reconstruction of photoacoustic bone imaging was analyzed. The results show that the AB-U-Net based deep learning method can obtain the image presented as a clear bone micro-structure. Compared with the traditional photoacoustic reconstruction method, the AB-U-Net-based reconstruction algorithm can achieve better performance, which greatly improves image quality on test set with peak signal to noise ratio (PSNR) and structural similarity increased (SSIM) by 3.83 dB and 0.17, respectively. The deep learning method holds great potential in enhancing PA imaging technology for bone disease detection.


2020 ◽  
Vol 25 (2) ◽  
pp. 86-97
Author(s):  
Sandy Suryo Prayogo ◽  
Tubagus Maulana Kusuma

DVB merupakan standar transmisi televisi digital yang paling banyak digunakan saat ini. Unsur terpenting dari suatu proses transmisi adalah kualitas gambar dari video yang diterima setelah melalui proses transimisi tersebut. Banyak faktor yang dapat mempengaruhi kualitas dari suatu gambar, salah satunya adalah struktur frame dari video. Pada tulisan ini dilakukan pengujian sensitifitas video MPEG-4 berdasarkan struktur frame pada transmisi DVB-T. Pengujian dilakukan menggunakan simulasi matlab dan simulink. Digunakan juga ffmpeg untuk menyediakan format dan pengaturan video akan disimulasikan. Variabel yang diubah dari video adalah bitrate dan juga group-of-pictures (GOP), sedangkan variabel yang diubah dari transmisi DVB-T adalah signal-to-noise-ratio (SNR) pada kanal AWGN di antara pengirim (Tx) dan penerima (Rx). Hasil yang diperoleh dari percobaan berupa kualitas rata-rata gambar pada video yang diukur menggunakan metode pengukuran structural-similarity-index (SSIM). Dilakukan juga pengukuran terhadap jumlah bit-error-rate BER pada bitstream DVB-T. Percobaan yang dilakukan dapat menunjukkan seberapa besar sensitifitas bitrate dan GOP dari video pada transmisi DVB-T dengan kesimpulan semakin besar bitrate maka akan semakin buruk nilai kualitas gambarnya, dan semakin kecil nilai GOP maka akan semakin baik nilai kualitasnya. Penilitian diharapkan dapat dikembangkan menggunakan deep learning untuk memperoleh frame struktur yang tepat di kondisi-kondisi tertentu dalam proses transmisi televisi digital.


Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 280
Author(s):  
Huadong Zheng ◽  
Jianbin Hu ◽  
Chaojun Zhou ◽  
Xiaoxi Wang

Computer holography is a technology that use a mathematical model of optical holography to generate digital holograms. It has wide and promising applications in various areas, especially holographic display. However, traditional computational algorithms for generation of phase-type holograms based on iterative optimization have a built-in tradeoff between the calculating speed and accuracy, which severely limits the performance of computational holograms in advanced applications. Recently, several deep learning based computational methods for generating holograms have gained more and more attention. In this paper, a convolutional neural network for generation of multi-plane holograms and its training strategy is proposed using a multi-plane iterative angular spectrum algorithm (ASM). The well-trained network indicates an excellent ability to generate phase-only holograms for multi-plane input images and to reconstruct correct images in the corresponding depth plane. Numerical simulations and optical reconstructions show that the accuracy of this method is almost the same with traditional iterative methods but the computational time decreases dramatically. The result images show a high quality through analysis of the image performance indicators, e.g., peak signal-to-noise ratio (PSNR), structural similarity (SSIM) and contrast ratio. Finally, the effectiveness of the proposed method is verified through experimental investigations.


2021 ◽  
pp. 1-16
Author(s):  
Ying Huang ◽  
Qian Wan ◽  
Zixiang Chen ◽  
Zhanli Hu ◽  
Guanxun Cheng ◽  
...  

Reducing X-ray radiation is beneficial for reducing the risk of cancer in patients. There are two main approaches for achieving this goal namely, one is to reduce the X-ray current, and another is to apply sparse-view protocols to do image scanning and projections. However, these techniques usually lead to degradation of the reconstructed image quality, resulting in excessive noise and severe edge artifacts, which seriously affect the diagnosis result. In order to overcome such limitation, this study proposes and tests an algorithm based on guided kernel filtering. The algorithm combines the characteristics of anisotropic edges between adjacent image voxels, expresses the relevant weights with an exponential function, and adjusts the weights adaptively through local gray gradients to better preserve the image structure while suppressing noise information. Experiments show that the proposed method can effectively suppress noise and preserve the image structure. Comparing with similar algorithms, the proposed algorithm greatly improves the peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and root mean square error (RMSE) of the reconstructed image. The proposed algorithm has the best effect in quantitative analysis, which verifies the effectiveness of the proposed method and good image reconstruction performance. Overall, this study demonstrates that the proposed method can reduce the number of projections required for repeated CT scans and has potential for medical applications in reducing radiation doses.


Author(s):  
Jihang Sun ◽  
Haoyan Li ◽  
Haiyun Li ◽  
Michelle Li ◽  
Yingzi Gao ◽  
...  

BACKGROUND: The inflammatory indexes of children with Takayasu arteritis (TAK) usually tend to be normal immediately after treatment, therefore, CT angiography (CTA) has become an important method to evaluate the status of TAK and sometime is even more sensitive than laboratory test results. OBJECTIVE: To evaluate image quality improvement in CTA of children diagnosed with TAK using a deep learning image reconstruction (DLIR) in comparison to other image reconstruction algorithms. METHODS: hirty-two TAK patients (9.14±4.51 years old) underwent neck, chest and abdominal CTA using 100 kVp were enrolled. Images were reconstructed at 0.625 mm slice thickness using Filtered Back-Projection (FBP), 50%adaptive statistical iterative reconstruction-V (ASIR-V), 100%ASIR-V and DLIR with high setting (DLIR-H). CT number and standard deviation (SD) of the descending aorta and back muscle were measured and contrast-to-noise ratio (CNR) for aorta was calculated. The vessel visualization, overall image noise and diagnostic confidence were evaluated using a 5-point scale (5, excellent; 3, acceptable) by 2 observers. RESULTS: There was no significant difference in CT number across images reconstructed using different algorithms. Image noise values (in HU) were 31.36±6.01, 24.96±4.69, 18.46±3.91 and 15.58±3.65, and CNR values for aorta were 11.93±2.12, 15.66±2.37, 22.54±3.34 and 24.02±4.55 using FBP, 50%ASIR-V, 100%ASIR-V and DLIR-H, respectively. The 100%ASIR-V and DLIR-H images had similar noise and CNR (all P >  0.05), and both had lower noise and higher CNR than FBP and 50%ASIR-V images (all P <  0.05). The subjective evaluation suggested that all images were diagnostic for large arteries, however, only 50%ASIR-V and DLIR-H met the diagnostic requirement for small arteries (3.03±0.18 and 3.53±0.51). CONCLUSION: DLIR-H improves CTA image quality and diagnostic confidence for TAK patients compared with 50%ASIR-V, and best balances image noise and spatial resolution compared with 100%ASIR-V.


2021 ◽  
Vol 94 (1121) ◽  
pp. 20201329
Author(s):  
Yoshifumi Noda ◽  
Tetsuro Kaga ◽  
Nobuyuki Kawai ◽  
Toshiharu Miyoshi ◽  
Hiroshi Kawada ◽  
...  

Objectives: To evaluate image quality and lesion detection capabilities of low-dose (LD) portal venous phase whole-body computed tomography (CT) using deep learning image reconstruction (DLIR). Methods: The study cohort of 59 consecutive patients (mean age, 67.2 years) who underwent whole-body LD CT and a prior standard-dose (SD) CT reconstructed with hybrid iterative reconstruction (SD-IR) within one year for surveillance of malignancy were assessed. The LD CT images were reconstructed with hybrid iterative reconstruction of 40% (LD-IR) and DLIR (LD-DLIR). The radiologists independently evaluated image quality (5-point scale) and lesion detection. Attenuation values in Hounsfield units (HU) of the liver, pancreas, spleen, abdominal aorta, and portal vein; the background noise and signal-to-noise ratio (SNR) of the liver, pancreas, and spleen were calculated. Qualitative and quantitative parameters were compared between the SD-IR, LD-IR, and LD-DLIR images. The CT dose-index volumes (CTDIvol) and dose-length product (DLP) were compared between SD and LD scans. Results: The image quality and lesion detection rate of the LD-DLIR was comparable to the SD-IR. The image quality was significantly better in SD-IR than in LD-IR (p < 0.017). The attenuation values of all anatomical structures were comparable between the SD-IR and LD-DLIR (p = 0.28–0.96). However, background noise was significantly lower in the LD-DLIR (p < 0.001) and resulted in improved SNRs (p < 0.001) compared to the SD-IR and LD-IR images. The mean CTDIvol and DLP were significantly lower in the LD (2.9 mGy and 216.2 mGy•cm) than in the SD (13.5 mGy and 1011.6 mGy•cm) (p < 0.0001). Conclusion: LD CT images reconstructed with DLIR enable radiation dose reduction of >75% while maintaining image quality and lesion detection rate and superior SNR in comparison to SD-IR. Advances in knowledge: Deep learning image reconstruction algorithm enables around 80% reduction in radiation dose while maintaining the image quality and lesion detection compared to standard-dose whole-body CT.


Sign in / Sign up

Export Citation Format

Share Document