scholarly journals 3d Printed Customized Total Scapular Replacement With Constrained Shoulder Joint After Wide Resection For Scapula Chondrosarcoma Treatment: A Case Report

Author(s):  
Dung Trung Tran ◽  
Quang Minh Dang ◽  
Thanh Duc Tran ◽  
Sang Tran Quang Nguyen ◽  
Cong Van Tran

Abstract IntroductionTotal scapular replacement surgery with constrained reverse shoulder joint a complex surgery, especially in the selection of replacement materials. The advent of three-dimensional (3D) printing technique contribute significantly to the success of surgeryCase presentationA 62-year-old female patient discovered a scapular tumor at the end of 2017. She underwent curettage and bone graft surgery 3 times. The histopathological diagnosis was enchondroma. However, tumor recurrence and malignant transformation unfortunately presented later. She visited our center and total scapular replacement with constrained reverse shoulder joint was then performed. After 6 months, the patient's functional outcome was evaluated by using Musculoskeletal Tumour Society Score (MSTS) with a score of 26/30. There was no sign of local tumor recurrence. The functional of elbow and hand was preserved almost completely. The range of active movement of the shoulder was 60° for forward flexion and abduction, and 45° for backward flexion.DiscussionDespite the follow-up time was still short, the use of the constrained shoulder joint with the applications of patient-specific 3D printing showed very positive outcomes. Patient was able to start rehabilitative early without any problems. More follow-up time would be needed to evaluate the long-term effectiveness of this method.ConclusionTotal scapular replacement with constrained reverse shoulder joint using 3D printing technology is a suitable option for the patients with scapular tumor invading the muscles of the rotator cuff.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yuan-Wei Zhang ◽  
Mu-Rong You ◽  
Xiao-Xiang Zhang ◽  
Xing-Liang Yu ◽  
Liang Zhang ◽  
...  

Objective. This current research is aimed at assessing clinical efficacy and prognosis of three-dimensional (3D) printing assisted patient-specific instrument (PSI) osteotomy guide in precise osteotomy of adult talipes equinovarus (ATE). Methods. We included a total of 27 patients of ATE malformation (including 12 males and 15 females) from June 2014 to June 2018 in the current research. The patients were divided into the routine group ( n = 12 ) and 3D printing group ( n = 15 ) based on different operative methods. The parameters, including the operative time, intraoperative blood loss, complications, time to obtain bony fusion, functional outcomes based on American Orthopedic Foot and Ankle Society (AOFAS), and International Congenital Clubfoot Study group (ICFSG) scoring systems between the two groups were observed and recorded regularly. Results. The 3D printing group exhibits superiorities in shorter operative time, less intraoperative blood loss, higher rate of excellent, and good outcomes presented by ICFSG score at last follow-up ( P < 0.001 , P < 0.001 , P = 0.019 ) than the routine group. However, there was no significant difference exhibited in the AOFAS score at the last follow-up and total rate of complications between the two groups ( P = 0.136 , P = 0.291 ). Conclusion. Operation assisted by 3D printing PSI osteotomy guide for correcting the ATE malformation is novel and feasible, which might be an effective method to polish up the precise osteotomy of ATE malformation and enhance the clinical efficacy.


2021 ◽  
Vol 49 (6) ◽  
pp. 030006052110285
Author(s):  
Kai Xiao ◽  
Bo Xu ◽  
Lin Ding ◽  
Weiguang Yu ◽  
Lei Bao ◽  
...  

Objective To assess the outcomes of traditional three-dimensional (3D) printing technology (TPT) versus mirror 3D printing technology (MTT) in treating isolated acetabular fractures (IAFs). Methods Consecutive patients with an IAF treated by either TPT or MTT at our tertiary medical centre from 2012 to 2018 were retrospectively reviewed. Follow-up was performed 1, 3, 6, and 12 months postoperatively and annually thereafter. The primary outcome was the Harris hip score (HHS), and the secondary outcomes were major intraoperative variables and key orthopaedic complications. Results One hundred fourteen eligible patients (114 hips) with an IAF (TPT, n = 56; MTT, n = 58) were evaluated. The median follow-up was 25 months (range, 21–28 months). At the last follow-up, the mean HHS was 82.46 ±14.70 for TPT and 86.30 ± 13.26 for MTT with a statistically significant difference. Significant differences were also detected in the major intraoperative variables (operation time, intraoperative blood loss, number of fluoroscopic screenings, and anatomical reduction number) and the major orthopaedic complications (loosening, implant failure, and heterotopic ossification). Conclusion Compared with TPT, MTT tends to produce accurate IAF reduction and may result in better intraoperative variables and a lower rate of major orthopaedic complications.


Author(s):  
Chia-An Wu ◽  
Andrew Squelch ◽  
Zhonghua Sun

Aim: To determine a printing material that has both elastic property and radiology equivalence close to real aorta for simulation of endovascular stent graft repair of aortic dissection. Background: With the rapid development of three-dimensional (3D) printing technology, a patient-specific 3D printed model is able to help surgeons to make better treatment plan for Type B aortic dissection patients. However, the radiological properties of most 3D printing materials have not been well characterized. This study aims to investigate the appropriate materials for printing human aorta with mechanical and radiological properties similar to the real aortic computed tomography (CT) attenuation. Objective: Quantitative assessment of CT attenuation of different materials used in 3D printed models of aortic dissection for developing patient-specific 3D printed aorta models to simulate type B aortic dissection. Method: A 25-mm length of aorta model was segmented from a patient’s image dataset with diagnosis of type B aortic dissection. Four different elastic commercial 3D printing materials, namely Agilus A40 and A50, Visijet CE-NT A30 and A70 were selected and printed with different hardness. Totally four models were printed out and conducted CT scanned twice on a 192-slice CT scanner using the standard aortic CT angiography protocol, with and without contrast inside the lumen.Five reference points with region of interest (ROI) of 1.77 mm2 were selected at the aortic wall and intimal flap and their Hounsfield units (HU) were measured and compared with the CT attenuation of original CT images. The comparison between the patient’s aorta and models was performed through a paired-sample t-test to determine if there is any significant difference. Result: The mean CT attenuation of aortic wall of the original CT images was 80.7 HU. Analysis of images without using contrast medium showed that the material of Agilus A50 produced the mean CT attenuation of 82.6 HU, which is similar to that of original CT images. The CT attenuation measured at images acquired with other three materials was significantly lower than that of original images (p<0.05). After adding contrast medium, Visijet CE-NT A30 had an average CT attenuation of 90.6 HU, which is close to that of the original images with statistically significant difference (p>0.05). In contrast, the CT attenuation measured at images acquired with other three materials (Agilus A40, A50 and Visiject CE-NT A70) was 129 HU, 135 HU and 129.6 HU, respectively, which is significantly higher than that of original CT images (p<0.05). Conclusion: Both Visijet CE-NT and Agilus have tensile strength and elongation close to real patient’s tissue properties producing similar CT attenuation. Visijet CE-NT A30 is considered the appropriate material for printing aorta to simulate contrast-enhanced CT imaging of type B aortic dissection. Due to lack of body phantom in the experiments, further research with simulation of realistic anatomical body environment should be conducted.


2018 ◽  
Vol 9 (4) ◽  
pp. 454-458 ◽  
Author(s):  
Sarah A. Chen ◽  
Chin Siang Ong ◽  
Nagina Malguria ◽  
Luca A. Vricella ◽  
Juan R. Garcia ◽  
...  

Purpose: Patients with hypoplastic left heart syndrome (HLHS) present a diverse spectrum of aortic arch morphology. Suboptimal geometry of the reconstructed aortic arch may result from inappropriate size and shape of an implanted patch and may be associated with poor outcomes. Meanwhile, advances in diagnostic imaging, computer-aided design, and three-dimensional (3D) printing technology have enabled the creation of 3D models. The purpose of this study is to create a surgical simulation and training model for aortic arch reconstruction. Description: Specialized segmentation software was used to isolate aortic arch anatomy from HLHS computed tomography scan images to create digital 3D models. Three-dimensional modeling software was used to modify the exported segmented models and digitally design printable customized patches that were optimally sized for arch reconstruction. Evaluation: Life-sized models of HLHS aortic arch anatomy and a digitally derived customized patch were 3D printed to allow simulation of surgical suturing and reconstruction. The patient-specific customized patch was successfully used for surgical simulation. Conclusions: Feasibility of digital design and 3D printing of patient-specific patches for aortic arch reconstruction has been demonstrated. The technology facilitates surgical simulation. Surgical training that leads to an understanding of optimal aortic patch geometry is one element that may potentially influence outcomes for patients with HLHS.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Gavin A. D'Souza ◽  
Michael D. Taylor ◽  
Rupak K. Banerjee

Assessing hemodynamics in vasculature is important for the development of cardiovascular diagnostic parameters and evaluation of medical devices. Benchtop experiments are a safe and comprehensive preclinical method for testing new diagnostic endpoints and devices within a controlled environment. Recent advances in three-dimensional (3D) printing have enhanced benchtop tests by allowing generation of patient-specific and pathophysiologic conditions. We used 3D printing, coupled with image processing and computer-aided design (CAD), to develop a patient-specific vascular test device from clinical data. The proximal pulmonary artery (PA) tree including the main, left, and right pulmonary arteries, with a stenosis within the left PA was selected as a representative anatomy for developing the vascular test device. Three test devices representing clinically relevant stenosis severities, 90%, 80%, and 70% area stenosis, were evaluated at different cardiac outputs (COs). A mock circulatory loop (MCL) generating pathophysiologic pulmonary pressure and flow was used to evaluate the hemodynamics within the devices. The dimensionless pressure drop–velocity ratio characteristic curves for the three stenosis severities were obtained. At a fixed CO, the dimensionless pressure drop increased nonlinearly with an increase in (a) the velocity ratio for a fixed stenosis severity and (b) the stenosis severity at a specific velocity ratio. The dimensionless pressure drop observed in vivo was similar (within 1%) to that measured in moderate area stenosis of 70% because both flows were viscous dominated. The hemodynamics of the 3D printed test device can be used for evaluating diagnostic endpoints and medical devices in a preclinical setting under realistic conditions.


2020 ◽  
Author(s):  
Michael Yue-Cheng Chen ◽  
Jacob Skewes ◽  
Ryan Daley ◽  
Maria Ann Woodruff ◽  
Nicholas John Rukin

Abstract BackgroundThree-dimensional (3D) printing is a promising technology but the limitations are often poorly understood. We compare different 3D printingmethods with conventional machining techniques in manufacturing meatal urethral dilators which were recently removed from the Australian market. MethodsA prototype dilator was 3D printed vertically orientated on a low cost fused deposition modelling (FDM) 3D printer in polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS). It was also 3D printed horizontally orientated in ABS on a high-end FDM 3D printer with soluble support material, as well as on a SLS 3D printer in medical nylon. The dilator was also machined in stainless steel using a lathe. All dilators were tested mechanically in a custom rig by hanging calibrated weights from the handle until the dilator snapped. ResultsThe horizontally printed ABS dilator experienced failure at a greater load than the vertically printed PLA and ABS dilators respectively (503g vs 283g vs 163g, p < 0.001). The SLS nylon dilator and machined steel dilator did not fail. The steel dilator is most expensive with a quantity of five at 98 USD each, but this decreases to 30 USD each for a quantity of 1000. In contrast, the cost for the SLS dilator is 33 USD each for five and 27 USD each for 1000. ConclusionsAt the current time 3D printing is not a replacement for conventional manufacturing. 3D printing is best used for patient-specific parts, prototyping or manufacturing complex parts that have additional functionality that cannot otherwise beachieved.


2020 ◽  
Author(s):  
Yanlong Han ◽  
Habaxi Kaken ◽  
Wei Zhao ◽  
Ainiwaerjiang Damaola ◽  
Li Wang

Abstract Background: This article presents an application of the use of a personalized three-dimensional (3D)-printed reverse shoulder prosthesis to be used in a reverse total shoulder arthroplasty (RTSA) for a patient with tuberculosis of the shoulder joint. Background: Patient concerns: A 37-year-old female, who suffered a trauma on her left shoulder 17 years ago, reported significant worsening pain and limited physical activity within the last 6 months. The left shoulder joint activity was clearly restricted. Diagnosis: Her clinical manifestations, bone changes in shoulder joint, and imaging results were all consistent with extended exposure to tuberculosis of the shoulder joint. Interventions: For this patient, a personalized 3D-printed titanium alloy shoulder joint prosthesis was used in the RTSA. The patient’s stability was regularly monitored and followed up after operation. During pre-operation, post-operation, and follow-up, the scores of ASES, Neer Shoulder score, and Constant-Murley Shoulder were evaluated. Results: 3D shoulder prosthesis was successfully implanted into the patient and complete anatomic reconstruction was performed intraoperatively. ASES, Neer, and Constant-Murley scores were gradually improved on follow-up. The X-ray image showed good bone healing and no changes in the position of the prosthesis seven and a half years post-operation. The functionality of the shoulder joint was well restored and no restrictions were found in activities of daily living. Conclusion: Personalized 3D-printed shoulder joint prosthesis is very effective in the treatment of advanced tuberculosis of the shoulder joint. 3D-printed technology may be a novel and efficient method for similar arthroplasties and severe bone defects.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Ali Zolfagharian ◽  
Timothy M Gregory ◽  
Mahdi Bodaghi ◽  
Saleh Gharaie ◽  
Pearse Fay

 Despite the frequency of mallet finger injuries, treatment options can often be costly, time-consuming, and ill-fitted. Three-dimensional (3D) printing allows for the production of highly customized and inexpensive splints, which suggests potential efficacy in the prescription of casts for musculoskeletal injuries. This study explores how the use of engineering concepts such as 3D printing and topology optimization (TO) can improve outcomes for patients. 3D printing enables the direct fabrication of the patient-specific complex shapes while utilizing finite element analysis and TO in the design of the splint allowed for the most efficient distribution of material to achieve mechanical requirements while reducing the amount of material used. The reduction in used material leads to significant improvements in weight reduction and heat dissipation, which would improve breathability and less sweating for the patient, greatly increasing comfort for the duration of their recovery.


2019 ◽  
Vol 29 (06) ◽  
pp. 733-743 ◽  
Author(s):  
Mari Nieves Velasco Forte ◽  
Tarique Hussain ◽  
Arno Roest ◽  
Gorka Gomez ◽  
Monique Jongbloed ◽  
...  

AbstractAdvances in biomedical engineering have led to three-dimensional (3D)-printed models being used for a broad range of different applications. Teaching medical personnel, communicating with patients and relatives, planning complex heart surgery, or designing new techniques for repair of CHD via cardiac catheterisation are now options available using patient-specific 3D-printed models. The management of CHD can be challenging owing to the wide spectrum of morphological conditions and the differences between patients. Direct visualisation and manipulation of the patients’ individual anatomy has opened new horizons in personalised treatment, providing the possibility of performing the whole procedure in vitro beforehand, thus anticipating complications and possible outcomes. In this review, we discuss the workflow to implement 3D printing in clinical practice, the imaging modalities used for anatomical segmentation, the applications of this emerging technique in patients with structural heart disease, and its limitations and future directions.


Author(s):  
Enrico Ferrari ◽  
Michele Gallo ◽  
Changtian Wang ◽  
Lei Zhang ◽  
Maurizio Taramasso ◽  
...  

Abstract Three-dimensional (3D)-printing technologies in cardiovascular surgery have provided a new way to tailor surgical and percutaneous treatments. Digital information from standard cardiac imaging is integrated into physical 3D models for an accurate spatial visualization of anatomical details. We reviewed the available literature and analysed the different printing technologies, the required procedural steps for 3D prototyping, the used cardiac imaging, the available materials and the clinical implications. We have highlighted different materials used to replicate aortic and mitral valves, vessels and myocardial properties. 3D printing allows a heuristic approach to investigate complex cardiovascular diseases, and it is a unique patient-specific technology providing enhanced understanding and tactile representation of cardiovascular anatomies for the procedural planning and decision-making process. 3D printing may also be used for medical education and surgical/transcatheter training. Communication between doctors and patients can also benefit from 3D models by improving the patient understanding of pathologies. Furthermore, medical device development and testing can be performed with rapid 3D prototyping. Additionally, widespread application of 3D printing in the cardiovascular field combined with tissue engineering will pave the way to 3D-bioprinted tissues for regenerative medicinal applications and 3D-printed organs.


Sign in / Sign up

Export Citation Format

Share Document