scholarly journals Three-dimensional printing in adult cardiovascular medicine for surgical and transcatheter procedural planning, teaching and technological innovation

Author(s):  
Enrico Ferrari ◽  
Michele Gallo ◽  
Changtian Wang ◽  
Lei Zhang ◽  
Maurizio Taramasso ◽  
...  

Abstract Three-dimensional (3D)-printing technologies in cardiovascular surgery have provided a new way to tailor surgical and percutaneous treatments. Digital information from standard cardiac imaging is integrated into physical 3D models for an accurate spatial visualization of anatomical details. We reviewed the available literature and analysed the different printing technologies, the required procedural steps for 3D prototyping, the used cardiac imaging, the available materials and the clinical implications. We have highlighted different materials used to replicate aortic and mitral valves, vessels and myocardial properties. 3D printing allows a heuristic approach to investigate complex cardiovascular diseases, and it is a unique patient-specific technology providing enhanced understanding and tactile representation of cardiovascular anatomies for the procedural planning and decision-making process. 3D printing may also be used for medical education and surgical/transcatheter training. Communication between doctors and patients can also benefit from 3D models by improving the patient understanding of pathologies. Furthermore, medical device development and testing can be performed with rapid 3D prototyping. Additionally, widespread application of 3D printing in the cardiovascular field combined with tissue engineering will pave the way to 3D-bioprinted tissues for regenerative medicinal applications and 3D-printed organs.

2018 ◽  
Vol 9 (4) ◽  
pp. 454-458 ◽  
Author(s):  
Sarah A. Chen ◽  
Chin Siang Ong ◽  
Nagina Malguria ◽  
Luca A. Vricella ◽  
Juan R. Garcia ◽  
...  

Purpose: Patients with hypoplastic left heart syndrome (HLHS) present a diverse spectrum of aortic arch morphology. Suboptimal geometry of the reconstructed aortic arch may result from inappropriate size and shape of an implanted patch and may be associated with poor outcomes. Meanwhile, advances in diagnostic imaging, computer-aided design, and three-dimensional (3D) printing technology have enabled the creation of 3D models. The purpose of this study is to create a surgical simulation and training model for aortic arch reconstruction. Description: Specialized segmentation software was used to isolate aortic arch anatomy from HLHS computed tomography scan images to create digital 3D models. Three-dimensional modeling software was used to modify the exported segmented models and digitally design printable customized patches that were optimally sized for arch reconstruction. Evaluation: Life-sized models of HLHS aortic arch anatomy and a digitally derived customized patch were 3D printed to allow simulation of surgical suturing and reconstruction. The patient-specific customized patch was successfully used for surgical simulation. Conclusions: Feasibility of digital design and 3D printing of patient-specific patches for aortic arch reconstruction has been demonstrated. The technology facilitates surgical simulation. Surgical training that leads to an understanding of optimal aortic patch geometry is one element that may potentially influence outcomes for patients with HLHS.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Kay S. Hung ◽  
Michael J. Paulsen ◽  
Hanjay Wang ◽  
Camille Hironaka ◽  
Y. Joseph Woo

In recent years, advances in medical imaging and three-dimensional (3D) additive manufacturing techniques have increased the use of 3D-printed anatomical models for surgical planning, device design and testing, customization of prostheses, and medical education. Using 3D-printing technology, we generated patient-specific models of mitral valves from their pre-operative cardiac imaging data and utilized these custom models to educate patients about their anatomy, disease, and treatment. Clinical 3D transthoracic and transesophageal echocardiography images were acquired from patients referred for mitral valve repair surgery and segmented using 3D modeling software. Patient-specific mitral valves were 3D-printed using a flexible polymer material to mimic the precise geometry and tissue texture of the relevant anatomy. 3D models were presented to patients at their pre-operative clinic visit and patient education was performed using either the 3D model or the standard anatomic illustrations. Afterward, patients completed questionnaires assessing knowledge and satisfaction. Responses were calculated based on a 1–5 Likert scale and analyzed using a nonparametric Mann–Whitney test. Twelve patients were presented with a patient-specific 3D-printed mitral valve model in addition to standard education materials and twelve patients were presented with only standard educational materials. The mean survey scores were 64.2 (±1.7) and 60.1 (±5.9), respectively (p = 0.008). The use of patient-specific anatomical models positively impacts patient education and satisfaction, and is a feasible method to open new opportunities in precision medicine.


2021 ◽  
Vol 9 (37) ◽  
pp. 60-65
Author(s):  
Bernardo Galvan ◽  
Mohammed Ansari ◽  
Ali Akbar Arvandi ◽  
Ronnie Orozco ◽  
Carlos Morales ◽  
...  

Three dimensional (3D) printed cardiac models are useful for WATCHMAN device procedural planning, sizing, and complication reduction. These models also provide accurate representation of dynamic heart anatomy, helping practitioners determine their procedural approach and select proper device sizing. While the efficacy of 3D models obtained from Computed Tomography and Transesophageal Echocardiography over 2D Transesophageal Echocardiography imaging for WATCHMAN procedural planning has been demonstrated, this project aims to directly compare 3D Computed Tomography versus 3D Transesophageal Echocardiography and determine which is more favorable. Computed Tomography and Transesophageal Echocardiography 2D imaging studies from patients that underwent LAA WATCHMAN closure device implantation we used as templates for 3D cardiac models. These 3D models were scored using a 10-point Likert questionnaire. Scoring was conducted by a diverse team that included cardiologists, research specialists, medical students, and 3D printing technicians.  Three dimensional models developed using Computed Tomography demonstrated favorability over 3D models by all qualitative measures. Scoring indicates that Computed Tomography based 3D models are superior tools for WATCHMAN sizing, multi-level medical education, and physician preparedness. To our knowledge, this is the only study that compares 3D models crafted from each imaging modality, and we hope that it encourages future use of 3D modeling techniques based on Computed Tomography scans.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Anna Aimar ◽  
Augusto Palermo ◽  
Bernardo Innocenti

Three-dimensional (3D) printing refers to a number of manufacturing technologies that generate a physical model from digital information. Medical 3D printing was once an ambitious pipe dream. However, time and investment made it real. Nowadays, the 3D printing technology represents a big opportunity to help pharmaceutical and medical companies to create more specific drugs, enabling a rapid production of medical implants, and changing the way that doctors and surgeons plan procedures. Patient-specific 3D-printed anatomical models are becoming increasingly useful tools in today’s practice of precision medicine and for personalized treatments. In the future, 3D-printed implantable organs will probably be available, reducing the waiting lists and increasing the number of lives saved. Additive manufacturing for healthcare is still very much a work in progress, but it is already applied in many different ways in medical field that, already reeling under immense pressure with regards to optimal performance and reduced costs, will stand to gain unprecedented benefits from this good-as-gold technology. The goal of this analysis is to demonstrate by a deep research of the 3D-printing applications in medical field the usefulness and drawbacks and how powerful technology it is.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Teresa E. Flaxman ◽  
Carly M. Cooke ◽  
Olivier X. Miguel ◽  
Adnan M. Sheikh ◽  
Sukhbir S. Singh

Abstract Background Patient specific three-dimensional (3D) models can be derived from two-dimensional medical images, such as magnetic resonance (MR) images. 3D models have been shown to improve anatomical comprehension by providing more accurate assessments of anatomical volumes and better perspectives of structural orientations relative to adjacent structures. The clinical benefit of using patient specific 3D printed models have been highlighted in the fields of orthopaedics, cardiothoracics, and neurosurgery for the purpose of pre-surgical planning. However, reports on the clinical use of 3D printed models in the field of gynecology are limited. Main text This article aims to provide a brief overview of the principles of 3D printing and the steps required to derive patient-specific, anatomically accurate 3D printed models of gynecologic anatomy from MR images. Examples of 3D printed models for uterine fibroids and endometriosis are presented as well as a discussion on the barriers to clinical uptake and the future directions for 3D printing in the field of gynecological surgery. Conclusion Successful gynecologic surgery requires a thorough understanding of the patient’s anatomy and burden of disease. Future use of patient specific 3D printed models is encouraged so the clinical benefit can be better understood and evidence to support their use in standard of care can be provided.


2020 ◽  
Vol 11 ◽  
pp. 381
Author(s):  
Moneer K. Faraj ◽  
Samer S. Hoz ◽  
Amjad J. Mohammad

Background: In the present study, we aim to develop simulation models based on computed tomography angiography images of intracranial aneurysms (IAs) and their parent vessels using three-dimensional (3D) printing technology. The study focuses on the value of these 3D models in presurgical planning and intraoperative navigation and ultimately their impact on patient outcomes. To the best of our knowledge, this is the first report of its kind from a war-torn country, like Iraq. Methods: This is a prospective study of a series of 11, consecutively enrolled, patients suffering from IAs for the period between February and September 2019. The study represents a collaboration between the two major neurosurgical centers in Baghdad/Iraq; Neurosciences Teaching Hospital and Neurosurgery Teaching Hospital. We analyzed the data of eleven patients with IAs treated by microsurgical clipping. These data include patient demographics, clinical, surgical, and outcomes along with the data of the 3D-printed replica used in these surgeries. All cases were operated on by one surgeon. Results: Our study included 11 patients, with a total of 11 aneurysms clipped. The mean age was 44 ± 8, with a median of 42.5 and a range of 35–61 years. About 60% of our patients were female with a female-to-male ratio of 1:5. About 60% of the aneurysms were located at the anterior communicating artery (Acom) while the remaining 40% were equally distributed between the posterior communicating and internal carotid arteries bifurcation. The standard pterional approach was followed in 50% of cases, whereas the other 50% of patients were treated through the lateral supraorbital approach. About 90% (n = 9) of the patients had a Glasgow Outcome Scale (GOS) of 5 and 10% had a GOS of 4. The 3D-printed models successfully replicated the aneurysm size, location, and relation to the parent vessel with 100% accuracy and were used for intraoperative guidance. The average production time was 24–48 h and the production cost was 10–20 US dollars. Conclusion: 3D printing is a promising technology that is rapidly penetrating the field of neurosurgery. In particular, the use of 3D-printed patient-matched, anatomically accurate replicas of the cerebral vascular tree is valuable adjunct to the microsurgical clipping of IAs, and our study conclusions support this concept. However, both the feasibility and clinical utility of 3D printing remain the subject of much, ongoing investigations.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ayse Hilal Bati

AbstractObjectivesThree-dimensional (3D) reconstruction and modelling techniques based on computer vision have shown significant progress in recent years. Patient-specific models, which are derived from the imaging data set and are anatomically consistent with each other, are important for the development of knowledge and skills. The purpose of this article is to share information about three-dimensional (3D) reconstruction and modelling techniques and its importance in medical education.MethodsAs 3D printing technology develops and costs are lower, adaptation to the original model will increase, thus making models suitable for the anatomical structure and texture. 3D printing has emerged as an innovative way to help surgeons implement more complex procedures.ResultsRecent studies have shown that 3D modelling is a powerful tool for pre-operative planning, proofing, and decision-making. 3D models have excellent potential for alternative interventions and surgical training on both normal and pathological anatomy. 3D printing is an attractive, powerful and versatile technology.ConclusionsPatient-specific models can improve performance and improve learning faster, while improving the knowledge, management and confidence of trainees, whatever their area of expertise. Physical interaction with models has proven to be the key to gaining the necessary motor skills for surgical intervention.


2021 ◽  
pp. 1-6
Author(s):  
David Liddle ◽  
Sheri Balsara ◽  
Karin Hamann ◽  
Adam Christopher ◽  
Laura Olivieri ◽  
...  

Abstract Introduction: Adolescents with CHD require transition to specialised adult-centred care. Previous studies have shown that adolescents’ knowledge of their medical condition is correlated with transition readiness. Three-dimensional printed models of CHD have been used to educate medical trainees and patients, although no studies have focused on adolescents with CHD. This study investigates the feasibility of combining patient-specific, digital 3D heart models with tele-education interventions to improve the medical knowledge of adolescents with CHD. Methods: Adolescent patients with CHD, aged between 13 and 18 years old, were enrolled and scheduled for a tele-education session. Patient-specific digital 3D heart models were created using images from clinically indicated cardiac magnetic resonance studies. The tele-education session was performed using commercially available, web-conferencing software (Zoom, Zoom Video Communications Inc.) and a customised software (Cardiac Review 3D, Indicated Inc.) incorporating an interactive display of the digital 3D heart model. Medical knowledge was assessed using pre- and post-session questionnaires that were scored by independent reviewers. Results: Twenty-two adolescents completed the study. The average age of patients was 16 years old (standard deviation 1.5 years) and 56% of patients identified as female. Patients had a variety of cardiac defects, including tetralogy of Fallot, transposition of great arteries, and coarctation of aorta. Post-intervention, adolescents’ medical knowledge of their cardiac defects and cardiac surgeries improved compared to pre-intervention (p < 0.01). Conclusions: Combining patient-specific, digital 3D heart models with tele-education sessions can improve adolescents’ medical knowledge and may assist with transition to adult-centred care.


2019 ◽  
Vol 25 (3) ◽  
pp. 496-514 ◽  
Author(s):  
Nataraj Poomathi ◽  
Sunpreet Singh ◽  
Chander Prakash ◽  
Rajkumar V. Patil ◽  
P.T. Perumal ◽  
...  

Purpose Bioprinting is a promising technology, which has gained a recent attention, for application in all aspects of human life and has specific advantages in different areas of medicines, especially in ophthalmology. The three-dimensional (3D) printing tools have been widely used in different applications, from surgical planning procedures to 3D models for certain highly delicate organs (such as: eye and heart). The purpose of this paper is to review the dedicated research efforts that so far have been made to highlight applications of 3D printing in the field of ophthalmology. Design/methodology/approach In this paper, the state-of-the-art review has been summarized for bioprinters, biomaterials and methodologies adopted to cure eye diseases. This paper starts with fundamental discussions and gradually leads toward the summary and future trends by covering almost all the research insights. For better understanding of the readers, various tables and figures have also been incorporated. Findings The usages of bioprinted surgical models have shown to be helpful in shortening the time of operation and decreasing the risk of donor, and hence, it could boost certain surgical effects. This demonstrates the wide use of bioprinting to design more precise biological research models for research in broader range of applications such as in generating blood vessels and cardiac tissue. Although bioprinting has not created a significant impact in ophthalmology, in recent times, these technologies could be helpful in treating several ocular disorders in the near future. Originality/value This review work emphasizes the understanding of 3D printing technologies, in the light of which these can be applied in ophthalmology to achieve successful treatment of eye diseases.


2015 ◽  
Vol 137 (08) ◽  
pp. 42-45
Author(s):  
Mike Vasquez

This article reviews the challenges for companies while adopting three-dimensional (3D) printing technology. A big challenge for companies figuring out whether they need to invest in 3-D printing is the different types of printing systems available in the market. At a high level, there are seven different families of 3-D printing processes. Each of the seven technologies is differentiated by the materials used and how the materials are fused together to create three-dimensional objects. Another barrier is that most companies have not yet found it viable to put the processes in place to incorporate the change in design, engineering, and manufacturing production that is required. Not only capital funds are needed to purchase machines, but to effectively use the technology to create a sellable product, one also needs to have a targeted product line and clear vision of the ways that 3-D printing can help lower material costs, save energy, and simplify manufacturing and assembly.


Sign in / Sign up

Export Citation Format

Share Document