Evaluation of Surface Integrity in Electrochemical Micromachining of A286 Super alloy

Author(s):  
Rajkeerthi E ◽  
Hariharan P

Abstract Surface integrity of micro components is a major concern particularly in manufacturing industries as most geometry of the products must meet out necessary surface quality requirements. Advanced machining process like electrochemical micro machining possess the capabilities to machine micro parts with best surface properties exempting them from secondary operations. In this research work, different electrolytes have been employed for producing micro holes in A286 super alloy material to achieve the best surface quality and the measurement of surface roughness and surface integrity to evaluate the machined surface is carried out. The machined micro hole provides detailed information on the geometrical features. A study of parametric analysis meant for controlling surface roughness and improvement of surface integrity has been made to find out the suitable parameters for machining. The suitability of various electrolytes with their dissolution mechanism and the influence of various electrolytes have been thoroughly studied. Among the utilized electrolytes, EG + NaNO3 electrolyte provided the best results in terms of overcut and average surface roughness.

2021 ◽  
Author(s):  
Sonia Ezeddini ◽  
Wajdi Rajhi ◽  
Mohamed Boujelbene ◽  
Emin Bayraktar ◽  
Sahbi Ben Salem

Abstract Ti-6242 is a super alloy which exhibits the best creep resistance among available titanium alloys and is widely used in the manufacture by WEDM of aircraft engine turbomachinery components. However, the final quality of wire EDMed surface is a great challenge as it is affected by various factors that need optimization for surface integrity and machine efficiency improvement. The aim of this study is to investigate the effect of a set of cutting process parameters such as pulse on time (Ton), servo voltage (U), feed rate (S) and flushing pressure (p) on surface roughness (SR) when machining Ti-6242 super alloy by WEDM process using a brass tool electrode and deionized water as a dielectric fluid. WEDM experiments were conducted, and SR (Ra) measurement was carried out using a 3D optical surface roughness-meter (3D–SurfaScan). As a tool to optimize cutting parameters for SR improvement, Taguchi's signal‐to‐noise ratio (S/N) approach was applied using L9 (3^4) orthogonal array and Lower-The-Better (LTB) criteria. Substantially, the findings from current investigation suggest the application of the values 0.9 µs, 100V, 29 mm/min, and 60 bar for Ton, U, S and p cutting parameters, respectively, for producing a good surface finish quality. Percent contributions of the machining parameters on SR (Ra) assessed based on ANOVA analysis are 62.94%, 20.84%, 11.46% and 4.74% for U, S, Ton and p, respectively. Subsequently, accurate predictive model for SR (Ra) is established based on response surface analysis (RSA). The contour plots for SR (Ra) indicate that when flushing pressure p converges to a critical value (80 bar), a poor-quality surface finish is highly expected with the excessive increase in U and S. Electron microscope scanning (SEM) observations have been performed on machined surface for a wide range of cutting parameters to characterize wire EDMed surface of Ti-6242. SEM micrographs indicate that the machined surface acquires a foamy structure and shows white layer and machining-induced damage that the characteristics are highly dependent on cutting parameters. At high servo-voltage, the decrease in pulse on time Ton and feed rate S results in a large decrease in overall machining-induced surface damage. Moreover, for high servo-voltage and feed rate levels, it has been observed that pulse on time could play a role of controlling the surface microcracks density. In fact, the use of a low pulse duration of cut combined with high servo-voltage and feed rate has been shown to inhibit surface microcracks formation giving the material surface a better resistance to cracking than at high pulse duration.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5943
Author(s):  
Arminder Singh Walia ◽  
Vineet Srivastava ◽  
Mayank Garg ◽  
Nalin Somani ◽  
Nitin Kumar Gupta ◽  
...  

In electrical discharge machining (EDM), the machined surface quality can be affected by the excessive temperature generation during the machining process. To achieve a longer life of the finished part, the machined surface quality plays a key role in maintaining its overall integrity. Surface roughness is an important quality evaluation of a material’s surface that has considerable influence on mechanical performance of the material. Herein, a sintered cermet tooltip with 75% copper and 25% titanium carbide was used as tool electrode for processing H13 steel. The experiments have been performed to investigate the effects of EDM parameters on the machined surface roughness. The findings show that, as the pulse current, pulse length, and pulse interval are increased, the surface roughness tends to rise. The most significant determinant for surface roughness was found to be pulse current. A semi-empirical surface roughness model was created using the characteristics of the EDM technique. Buckingham’s theorem was used to develop a semi-empirical surface roughness prediction model. The semi-empirical model’s predictions were in good agreement with the experimental studies, and the built empirical model based on physical features of the cermet tooltip was tested using dimensional analysis.


2011 ◽  
Vol 410 ◽  
pp. 236-239 ◽  
Author(s):  
Anil Kumar ◽  
S. Maheshwari ◽  
C. Sharma

In this experimental study attempt has been made to realize potential of cryogenic treatment in enhancing surface quality with fine aluminum and graphite additives powders in AEDM of nickel based super alloy Inconel 718. L36(23x36) Orthogonal Array has been selected to conduct and analyze experiments based on Taguchi methodology. Polarity, peak current, pulse on time, duty cycle, gap voltage, retract distance, concentration of fine aluminum and graphite powder added into the dielectric fluid are chosen as input process variables to study performance in terms of surface roughness (SR) using copper and deep cryogenically treated copper electrode. It is found experimentally that deep cryogenically treated copper electrode with addition of 6g/l graphite powder improves surface roughness appreciably. The same has been supported by SEM analysis of the machined surface.


2017 ◽  
Vol 41 (3) ◽  
pp. 387-394 ◽  
Author(s):  
M. Anthony Xavior ◽  
M. Manohar ◽  
Mahesh Madhukar Patil ◽  
P. Jeyapandiarajan

Surface roughness and residual stress are considered to be major surface integrity issues that directly affect the quality and life of the components. The current research work highlights surface quality and residual stresses induced while machining Inconel 718 with a range of cutting parameters and cutting environments. Further, the study aimed to determine the optimal parameters/conditions in terms of cutting speeds, tool materials and cutting conditions to achieve better surface quality and minimum residual stress values. Minimum quantity lubrication resulted in minimum residual values for all cutting inserts and cutting velocities. The minimum surface roughness was obtained while machining at 100 m/min using a carbide insert under flood cooling condition.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 530 ◽  
Author(s):  
Rakesh Chaudhari ◽  
Jay J. Vora ◽  
Vivek Patel ◽  
L. N. López de Lacalle ◽  
D. M. Parikh

Shape-memory alloys such as nitinol are gaining popularity as advanced materials in the aerospace, medical, and automobile sectors. However, nitinol is a difficult-to-cut material because of its versatile specific properties such as the shape-memory effect, superelasticity, high specific strength, high wear and corrosion resistance, and severe strain hardening. Anunconventional machining process like wire-electrical-discharge-machining (WEDM) can be effectively and efficiently used for the machining of such alloys, although the WEDM-induced surface integrity of nitinol hassignificant impact on material performance. Therefore, this work investigated the surface integrity of WEDM-processed nitinol samples using digital microscopy imaging, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) analysis. Three-dimensional analysis of the surfaces was carried out in two different patterns (along the periphery and the vertical plane of the machined surface) andrevealed that surface roughness was maximalat the point where the surface was largely exposed to the WEDM dielectric fluid. To attain the desired surface roughness, appropriate discharge energy is required that, in turn, requires the appropriate parameter settings of the WEDM process. Different SEM image analyses showed a reduction in microcracks and pores, and in globule-density size at optimized parameters. EDX analysis revealed the absence of wire material on the machined surface


2006 ◽  
Vol 315-316 ◽  
pp. 391-395
Author(s):  
Wen Ge Wu ◽  
Si Qin Pang ◽  
Zhan Qiang Liu

Reversible cutting method is a new research thesis proposed to shorten processing route, decrease tool number and handling time, increase machining efficiency. The aim of the presented work was to analysis the effects of reversible fine machining sequence on surface integrity in machined layer. Nonlinear hardening during reverse loading and the change of the Bauschinger effect factor with plastic strain were properly taken into account. In experiments, the residual stresses have been measured using the X-ray diffraction technique (at the surface of the workpiece and in depth). Moreover, micro-hardness and surface roughness of machined surface are presented. Experimental data for the range of cutting parameters tested showed that the reversible fine machining produce the tensile residual stresses at the surface, which are critical in the performance of the machined components. The experimental results of micro-hardness of reversible fine machining technique are smaller than that of general fine machining show that decreased plastic deformation of the surface layer and work-hardening. Surface roughness of machined surface with reversible finishing is discussed. Research results indicted that it can be adopted such planning which rough machining during advance stroke and fine machining or semi-finishing during return stroke in machining process. In this way, it has such advantages that increase machining efficiency and machining accuracy, decrease bending deformation.


2011 ◽  
Vol 672 ◽  
pp. 319-322 ◽  
Author(s):  
Mustafa Günay ◽  
Ulvi Şeker

MMCs components are mostly produced using near net shape manufacturing methods and are subsequently machined to the final dimensions and surface finishes. The MMCs consist of extremely hard reinforcing particles and pose considerable challenges due to the poor machinability and severe wear of the cutting tool. In this study, cutting performance of WC, CBN and PCD cutting tools were investigated with respect to surface roughness during machining of 10 wt % SiCp reinforced Al-Si alloy matrix composites produced by powder metallurgy (PM) method. Average surface roughness (Ra) corresponding to each machining condition was measured. After the machining process the worn insert tips were examined under the scanning electron microscope (SEM). Chip geometry and machined surface photographs have been taken by optical microscopy. The experimental results showed that surface roughness decreased with increasing cutting speed for all of cutting tool materials. The best surface integrity was occurred after the machining with PCD insert at the highest cutting speed employed.


2018 ◽  
Vol 1 (2) ◽  
pp. 142-153 ◽  
Author(s):  
Mukesh Tak ◽  
Vedanth Reddy S ◽  
Abhijeet Mishra ◽  
Rakesh G. Mote

Titanium and its alloys have excellent mechanical and chemical properties; however, these properties make the processing of titanium alloys more challenging compared with other engineering materials. Electrochemical micromachining (ECMM) is a non-conventional machining process, which removes material through anodic dissolution regardless of the material’s hardness. However, during the electrochemical machining of titanium, the formation of a passive oxide layer inhibits further material removal and deteriorates the machined surface quality. In addition, the accuracy of micromachining of titanium alloys is especially affected by the formation of electrolysis precipitates such as TiO2 and stray current dissolution. In this study, the effect of the addition of the complexing agent to different electrolytic solutions on the radial overcut during micro-drilling of titanium alloy grade 5 (Ti6Al4V) has been experimentally studied using the in-house developed ECMM set-up. The influence of parameters such as applied voltage and different electrolytic concentration with and without the complexing agent on overcut during ECMM on Ti6Al4V of micro-holes has been studied. It has been safely concluded that the quality of micro-holes fabricated in the presence of EDTA in the electrolyte while machining is responsible for better dimensional characteristics.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Li Xun ◽  
Wang Ziming ◽  
Yang Shenliang ◽  
Guo Zhiyuan ◽  
Zhou Yongxin ◽  
...  

Titanium alloy Ti1023 is a typical difficult-to-cut material. Tool wear is easy to occur in machining Ti1023, which has a significant negative effect on surface integrity. Turning is one of the common methods to machine Ti1023 parts and machined surface integrity has a direct influence on the fatigue life of parts. To control surface integrity and improve anti-fatigue behavior of Ti1023 parts, it has an important significance to study the influence of tool wear on the surface integrity and fatigue life of Ti1023 in turning. Therefore, the effect of tool wear on the surface roughness, microhardness, residual stress, and plastic deformation layer of Ti1023 workpieces by turning and low-cycle fatigue tests were studied. Meanwhile, the influence mechanism of surface integrity on anti-fatigue behavior also was analyzed. The experimental results show that the change of surface roughness caused by worn tools has the most influence on anti-fatigue behavior when the tool wear VB is from 0.05 to 0.25 mm. On the other hand, the plastic deformation layer on the machined surface could properly improve the anti-fatigue behavior of specimens that were proved in the experiments. However, the higher surface roughness and significant surface defects on surface machined utilizing the worn tool with VB = 0.30 mm, which leads the anti-fatigue behavior of specimens to decrease sharply. Therefore, to ensure the anti-fatigue behavior of parts, the value of turning tool wear VB must be rigorously controlled under 0.30 mm during finishing machining of titanium alloy Ti1023.


Sign in / Sign up

Export Citation Format

Share Document